论文标题
由痕迹或超级跟踪产生的理想代数$ h_ {1,ν}(i_2(2m+1))$ ii
Ideals generated by traces or by supertraces in the symplectic reflection algebra $H_{1,ν}(I_2(2m+1))$ II
论文作者
论文摘要
基于root System $ i_2(2m+1)$具有$ M $ $ $ - 数(M+1)的$(M+1)$ - $(M+1)$ - $(M+1)$ - $(M+1)$ - $(M+1)$ - $(M+1)$ - $(M+1)$ - $(M+1)$ - $(M+1)$ - $(M+1)$ - $(M+1)$ - $(M+1)$ - $(M+1),代数$ \ MATHCAL H:= H_ {1,ν}(i_2(2m+1))$ calogero模型的可观察模型和$(M+1)$(m+1)$ - $(M+1)$ - $ - $ - $ - $ - $(M+1)。在前面的论文中,我们发现了参数$ν$的所有值,其痕迹的空间包含一个〜DENEMERATEN非零跟踪$tr_ν$或超级词的空间包含一个〜脱位的非零supertrace $str_ν$,并且作为一个〜的结果,代数$ \ mathcal h $具有两种序列的理想。 $ b_ {tr_ν}(x,y)=tr_ν(xy)$或另一个由表格$ b_ {str_ν}(x,y)=str_ν(xy)$组成的所有向量。我们注意到,如果$ν= \ frac z {2m+1} $,其中$ z \ in \ mathbb z \ setminus(2m+1)\ mathbb z $,则存在否定的跟踪和$ \ mathcal h $的变性trace和〜退化的超级跟踪。 在这里,我们证明由这些退化形式确定的理想重合。
The algebra $\mathcal H:= H_{1,ν}(I_2(2m+1))$ of observables of the Calogero model based on the root system $I_2(2m+1)$ has an $m$-dimensional space of traces and an $(m+1)$-dimensional space of supertraces. In the preceding paper we found all values of the parameter $ν$ for which either the space of traces contains a~degenerate nonzero trace $tr_ν$ or the space of supertraces contains a~degenerate nonzero supertrace $str_ν$ and, as a~consequence, the algebra $\mathcal H$ has two-sided ideals: one consisting of all vectors in the kernel of the form $B_{tr_ν}(x,y)=tr_ν(xy)$ or another consisting of all vectors in the kernel of the form $B_{str_ν}(x,y)=str_ν(xy)$. We noticed that if $ν=\frac z {2m+1}$, where $z\in \mathbb Z \setminus (2m+1) \mathbb Z$, then there exist both a degenerate trace and a~degenerate supertrace on $\mathcal H$. Here we prove that the ideals determined by these degenerate forms coincide.