论文标题

使用可区分的编程进行灵活的统计建模

Using Differentiable Programming for Flexible Statistical Modeling

论文作者

Hackenberg, Maren, Grodd, Marlon, Kreutz, Clemens, Fischer, Martina, Esins, Janina, Grabenhenrich, Linus, Karagiannidis, Christian, Binder, Harald

论文摘要

作为范式,可区分的编程最近引起了极大的兴趣,可促进采用计算机程序的梯度。尽管到目前为止,相应的基于梯度的优化方法主要用于深度学习或通过建模组件丰富后者,但我们希望证明它们也可以在统计建模本身上(例如,在经典的最大可能性方法都具有挑战性或不可行时,对于统计建模本身,例如统计建模本身都有用。在COVID-19设置的应用程序中,我们利用可区分的编程快速构建和优化适合当前数据质量挑战的灵活预测模型。具体而言,我们开发了一个受延迟微分方程的启发的回归模型,该模型可以弥合Covid-19重症监护案例中心注册中心注册中心的时间差距,以预测未来的需求。在这一示例性的建模挑战下,我们说明了可区分的编程如何通过自动差异来实现模型的简单优化。这使我们能够在时间压力下快速原型制作模型,该模型优于简单的基准模型。因此,我们体现了在深度学习应用程序之外的可区分编程的潜力,以提供更多的灵活应用统计建模的选项。

Differentiable programming has recently received much interest as a paradigm that facilitates taking gradients of computer programs. While the corresponding flexible gradient-based optimization approaches so far have been used predominantly for deep learning or enriching the latter with modeling components, we want to demonstrate that they can also be useful for statistical modeling per se, e.g., for quick prototyping when classical maximum likelihood approaches are challenging or not feasible. In an application from a COVID-19 setting, we utilize differentiable programming to quickly build and optimize a flexible prediction model adapted to the data quality challenges at hand. Specifically, we develop a regression model, inspired by delay differential equations, that can bridge temporal gaps of observations in the central German registry of COVID-19 intensive care cases for predicting future demand. With this exemplary modeling challenge, we illustrate how differentiable programming can enable simple gradient-based optimization of the model by automatic differentiation. This allowed us to quickly prototype a model under time pressure that outperforms simpler benchmark models. We thus exemplify the potential of differentiable programming also outside deep learning applications, to provide more options for flexible applied statistical modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源