论文标题
多价值煤层模态逻辑:一步完整性和有限模型属性
Many-Valued Coalgebraic Modal Logic: One-step Completeness and Finite Model Property
论文作者
论文摘要
在本文中,我们通过谓词提升方法研究了综合版本的结构模态逻辑。被理解为通用过渡系统的煤桥可以用作各种模态逻辑的语义结构。煤层模态逻辑的一个众所周知的结果是,它的完整性可以在一步级别确定。我们通过使用规范模型构建方法将结果推广到有限的多价值情况。我们证明了基于三个不同多个多元为代数结构的煤层模态逻辑的结果,包括有限价值的olukasiewicz代数,即交换性的全力代数(fl $ _ {ew} $ - algebra-algebra)与CALONICAL CONSTTANT和BAAZ DELTA扩展 - 随着估值操作的扩展。此外,我们还通过使用过滤技术证明了许多价值煤层模态逻辑的有限模型属性。
In this paper, we investigate the many-valued version of coalgebraic modal logic through predicate lifting approach. Coalgebras, understood as generic transition systems, can serve as semantic structures for various kinds of modal logics. A well-known result in coalgebraic modal logic is that its completeness can be determined at the one-step level. We generalize the result to the finitely many-valued case by using the canonical model construction method. We prove the result for coalgebraic modal logics based on three different many-valued algebraic structures, including the finitely-valued Łukasiewicz algebra, the commutative integral Full-Lambek algebra (FL$_{ew}$-algebra) expanded with canonical constants and Baaz Delta, and the FL$_{ew}$-algebra expanded with valuation operations. In addition, we also prove the finite model property of the many-valued coalgebraic modal logic by using the filtration technique.