论文标题
低分辨率的完全匹配以进行差异估计
Full Matching on Low Resolution for Disparity Estimation
论文作者
论文摘要
在这项工作中提出了多阶段的全匹配差异估计方案(MFM)。我们证明,将所有相似性直接从低分辨率的4D体积逐步脱离,而不是通过专注于优化低分辨率4D迭代的低分辨率3D成本体积估计3D成本量,从而导致更准确的差异。为此,我们首先建议将完整的匹配任务分解为成本聚合模块的多个阶段。具体而言,我们将高分辨率预测的结果分解为多组,而新设计的成本聚合模块的每个阶段都学习仅以估算一组点的结果。当从一个阶段从一个低分辨率的4D体积输出中学习所有候选人的相似性得分时,这可以减轻特征内部竞争的问题。然后,我们提出了\ emph {阶段相互辅助}的策略,该策略利用了多个阶段的关系来提高每个阶段的相似性分数估计,以解决由串行多阶段框架引起的多个阶段的不平衡预测。实验结果表明,所提出的方法可实现更准确的差异估计结果,并且在场景流程,Kitti 2012和Kitti 2015数据集上的最先进方法。
A Multistage Full Matching disparity estimation scheme (MFM) is proposed in this work. We demonstrate that decouple all similarity scores directly from the low-resolution 4D volume step by step instead of estimating low-resolution 3D cost volume through focusing on optimizing the low-resolution 4D volume iteratively leads to more accurate disparity. To this end, we first propose to decompose the full matching task into multiple stages of the cost aggregation module. Specifically, we decompose the high-resolution predicted results into multiple groups, and every stage of the newly designed cost aggregation module learns only to estimate the results for a group of points. This alleviates the problem of feature internal competitive when learning similarity scores of all candidates from one low-resolution 4D volume output from one stage. Then, we propose the strategy of \emph{Stages Mutual Aid}, which takes advantage of the relationship of multiple stages to boost similarity scores estimation of each stage, to solve the unbalanced prediction of multiple stages caused by serial multistage framework. Experiment results demonstrate that the proposed method achieves more accurate disparity estimation results and outperforms state-of-the-art methods on Scene Flow, KITTI 2012 and KITTI 2015 datasets.