论文标题
分类感知:深度学习的基础
Categorical Perception: A Groundwork for Deep Learning
论文作者
论文摘要
人类和其他动物分类的众所周知的感知后果(称为分类感知)的特征在于类别内压缩和类别间分离的特征:如果它们属于同一类别,则在输入空间中接近两个项目,而不是属于不同的类别。详细介绍了认知科学的实验和理论结果,在这里我们研究了人工神经网络中的分类效应。我们结合了利用相互和渔民信息量的理论分析,以及一系列关于复杂性增加网络的数值模拟。这些形式和数值分析为深层层中神经表示的几何形状提供了见解,其空间近乎近乎边界的扩展和收缩远非类别边界。我们通过使用两种互补方法研究分类表示:一种模仿心理物理学和认知神经科学实验,通过不同类别的刺激之间的变形连续体进行了变形的连续性,而另一个类别性索引则引入了网络中每个层中的每个层,可以量化Neural人群层面上类别的分离性。我们在浅层神经网络和深度神经网络上都显示学习会自动引起分类感知。我们进一步表明,一层越深,分类效应越强。作为我们研究的结果,我们提出了对辍学正则化技术不同启发式实践功效的连贯观点。更一般而言,我们的观点在神经科学文献中发现回声,坚持在任何给定层中噪声的差异影响,具体取决于所学的神经表示的几何形状,即这种几何形状如何反映类别的结构。
A well-known perceptual consequence of categorization in humans and other animals, called categorical perception, is notably characterized by a within-category compression and a between-category separation: two items, close in input space, are perceived closer if they belong to the same category than if they belong to different categories. Elaborating on experimental and theoretical results in cognitive science, here we study categorical effects in artificial neural networks. We combine a theoretical analysis that makes use of mutual and Fisher information quantities, and a series of numerical simulations on networks of increasing complexity. These formal and numerical analyses provide insights into the geometry of the neural representation in deep layers, with expansion of space near category boundaries and contraction far from category boundaries. We investigate categorical representation by using two complementary approaches: one mimics experiments in psychophysics and cognitive neuroscience by means of morphed continua between stimuli of different categories, while the other introduces a categoricality index that, for each layer in the network, quantifies the separability of the categories at the neural population level. We show on both shallow and deep neural networks that category learning automatically induces categorical perception. We further show that the deeper a layer, the stronger the categorical effects. As an outcome of our study, we propose a coherent view of the efficacy of different heuristic practices of the dropout regularization technique. More generally, our view, which finds echoes in the neuroscience literature, insists on the differential impact of noise in any given layer depending on the geometry of the neural representation that is being learned, i.e. on how this geometry reflects the structure of the categories.