论文标题

SSD-GAN:测量空间和光谱域中的现实性

SSD-GAN: Measuring the Realness in the Spatial and Spectral Domains

论文作者

Chen, Yuanqi, Li, Ge, Jin, Cece, Liu, Shan, Li, Thomas

论文摘要

本文观察到,标准GAN的歧视者缺少高频的问题,我们揭示了它源于网络体系结构中使用的下采样层。这个问题使发电机缺乏歧视者学习高频内容的动力,从而导致生成的图像和真实图像之间的频谱差异很大。由于傅立叶变换是一种徒图映射,因此我们认为减少这种频谱差异将提高gan的性能。为此,我们介绍了SSD-GAN,这是对gan的增强,以减轻歧视者的光谱信息损失。具体而言,我们建议将频率吸引的分类器嵌入到歧视器中,以测量空间和光谱域中输入的现实性。借助增强的鉴别器,鼓励SSD-GAN的生成器学习真实数据的高频内容并生成确切的细节。所提出的方法是一般的,可以轻松地集成到大多数现有的gan框架中,而无需过多成本。 SSD-GAN的有效性在各种网络体系结构,目标函数和数据集上进行了验证。代码将在https://github.com/cyq373/ssd-gan上找到。

This paper observes that there is an issue of high frequencies missing in the discriminator of standard GAN, and we reveal it stems from downsampling layers employed in the network architecture. This issue makes the generator lack the incentive from the discriminator to learn high-frequency content of data, resulting in a significant spectrum discrepancy between generated images and real images. Since the Fourier transform is a bijective mapping, we argue that reducing this spectrum discrepancy would boost the performance of GANs. To this end, we introduce SSD-GAN, an enhancement of GANs to alleviate the spectral information loss in the discriminator. Specifically, we propose to embed a frequency-aware classifier into the discriminator to measure the realness of the input in both the spatial and spectral domains. With the enhanced discriminator, the generator of SSD-GAN is encouraged to learn high-frequency content of real data and generate exact details. The proposed method is general and can be easily integrated into most existing GANs framework without excessive cost. The effectiveness of SSD-GAN is validated on various network architectures, objective functions, and datasets. Code will be available at https://github.com/cyq373/SSD-GAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源