论文标题

边缘计算辅助无人机的自动驾驶:视觉与沟通之间的协同作用

Edge Computing Assisted Autonomous Flight for UAV: Synergies between Vision and Communications

论文作者

Chen, Quan, Zhu, Hai, Yang, Lei, Chen, Xiaoqian, Pollin, Sofie, Vinogradov, Evgenii

论文摘要

无人机的自动飞行依赖于视觉信息来避免障碍并确保安全的无碰撞飞行。除了视觉线索外,安全的无人机通常需要与地面站的连接性。在本文中,我们研究了启用边缘计算的无人机飞行的视觉与通信之间的协同作用。通过提出一个边缘计算辅助自动驾驶飞行(ECAAF)的框架,我们说明愿景和沟通可以借助边缘计算和卸载与彼此互动,并进一步加快了无人机任务的完成。 ECAAF由三个功能组成,这些功能详细讨论:3D地图获取的边缘计算,3D地图的无线电图构造以及在线轨迹计划。在ECAAF期间,沟通能力,视频卸载,3D地图质量以及轨迹状态的相互作用形成了积极的反馈回路。仿真结果验证了所提出的方法可以通过提高连接性来提高任务绩效。最后,我们以一些未来的研究指示得出结论。

Autonomous flight for UAVs relies on visual information for avoiding obstacles and ensuring a safe collision-free flight. In addition to visual clues, safe UAVs often need connectivity with the ground station. In this paper, we study the synergies between vision and communications for edge computing-enabled UAV flight. By proposing a framework of Edge Computing Assisted Autonomous Flight (ECAAF), we illustrate that vision and communications can interact with and assist each other with the aid of edge computing and offloading, and further speed up the UAV mission completion. ECAAF consists of three functionalities that are discussed in detail: edge computing for 3D map acquisition, radio map construction from the 3D map, and online trajectory planning. During ECAAF, the interactions of communication capacity, video offloading, 3D map quality, and channel state of the trajectory form a positive feedback loop. Simulation results verify that the proposed method can improve mission performance by enhancing connectivity. Finally, we conclude with some future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源