论文标题
用二维流体动力学模拟校准核心过冲参数
Calibrating Core Overshooting Parameters With Two-dimensional Hydrodynamical Simulations
论文作者
论文摘要
对流区域周围混合区域的程度是恒星进化中最大的不确定性之一。一般播放描述引入了一个免费参数($ f_ {ov} $),通常在观察值中受到限制。尤其是在小型中央对流区域,由于其与压力尺度高度的紧密连接,值高度不确定。长期的多维流体动力模拟可用于研究过架区域和所涉及的混合过程的大小。在这里,我们展示了如何通过执行零时代 - 序列星星的2D Maestro模拟来校准过度调整参数,范围从$ 1.3 $到$ 3.5 m_ \ odot $。模拟涵盖了恒星的对流岩心,而周围的辐射包膜很大一部分。我们遵循对流流量至少20个对流的周转时间,而最长的模拟涵盖了430个周转时间尺度。这使我们能够研究混合以及对流边界如何随时间发展,以及如何用过冲的参数来解释所产生的夹带。我们发现,在模拟的初始模型中,将过冲的参数$ f_ {ov} $增加到一定值,从而完全改变了混合行为。该结果可用于对过冲的参数限制。我们发现$ 0.010 <f_ {ov} <0.017 $与我们对$ 3.5 m_ \ odot $ mass star的模拟非常同意。我们还确定了由于内部重力波(IGW)引起的扩散混合成分,该分量在整个稳定层中具有活性,但在我们的模拟中可能被高估了。此外,将我们的校准方法应用于较少巨大恒星的模拟表明需要进行质量依赖性的过度旋转描述,在这种描述中,对于小对流核心而言,用压力尺度的混合降低了。
The extent of mixed regions around convective zones is one of the biggest uncertainties in stellar evolution. 1D overshooting descriptions introduce a free parameter ($f_{ov}$) that is in general not well constrained from observations. Especially in small central convective regions the value is highly uncertain due to its tight connection to the pressure scale height. Long-term multi-dimensional hydrodynamic simulations can be used to study the size of the overshooting region and the involved mixing processes. Here we show how one can calibrate an overshooting parameter by performing 2D Maestro simulations of Zero-Age-Main-Sequence stars ranging from $1.3$ to $3.5 M_\odot$. The simulations cover the convective cores of the stars and a large fraction of the surrounding radiative envelope. We follow the convective flow for at least 20 convective turnover times, while the longest simulation covers 430 turnover time scales. This allows us to study how the mixing as well as the convective boundary evolve with time, and how the resulting entrainment can be interpreted in terms of overshooting parameters. We find that increasing the overshooting parameter $f_{ov}$ beyond a certain value in the initial model of our simulations, changes the mixing behaviour completely. This result can be used to put limits on the overshooting parameter. We find $0.010 < f_{ov} < 0.017$ to be in good agreement with our simulations of a $3.5 M_\odot$ mass star. We also identify a diffusive mixing component due to internal gravity waves (IGW) that is active throughout the convectively stable layer, but likely overestimated in our simulations. Furthermore, applying our calibration method to simulations of less massive stars suggests a need for a mass-dependent overshooting description where the mixing in terms of the pressure scale height is reduced for small convective cores.