论文标题

带有传导,粘度和磁场的模拟星际介质中的热不稳定性和多相气体

Thermal Instability and Multiphase Gas in the Simulated Interstellar Medium with Conduction, Viscosity and Magnetic Fields

论文作者

Jennings, R. Michael, Li, Yuan

论文摘要

热不稳定性(TI)在多相结构的形成及其在星际介质(ISM)中起着至关重要的作用,并且是各种天体物理环境中冷云创造的主要理论。在本文中,我们使用二维(2D)模拟在各种初始条件和物理过程的影响下研究热不稳定性。我们尝试不同初始功率谱的高斯随机场(GRF)密度扰动。我们还注册了各向同性流体动力和各向异性磁流体动力学(MHD)模拟中的热传导和物理粘度。我们发现,初始的GRF光谱指数$α$对热不稳定性的纯流体动力发展产生了巨大影响,从而影响了云的大小,数量和运动。云破坏是由于两种机制而发生的:撕裂和收缩反弹。在各向同性传导和粘度的运行中,云的结构和动力学在非线性方向上以蒸发和冷凝水为主,并且流速由粘度调节。云破坏是由于达里乌斯(Darrieus-landau)不稳定(DLI)而发生的。尽管在很晚时,所有单个云在所有流体动力运行中都合并为一个冷结构。在MHD情况下,云结构由初始扰动和初始磁场强度决定。在高$β$运行中,各向异性传导会导致密集的细丝与局部磁场保持一致,并且磁场方向可以重新定位。强磁场会抑制跨场收缩,冷丝可能会沿着或垂直于初始场形成。

Thermal instability (TI) plays a crucial role in the formation of multiphase structures and their dynamics in the Interstellar Medium (ISM) and is a leading theory for cold cloud creation in various astrophysical environments. In this paper we use two-dimensional (2D) simulations to investigate thermal instability under the influence of various initial conditions and physical processes. We experiment with Gaussian random field (GRF) density perturbations of different initial power spectra. We also enroll thermal conduction and physical viscosity in isotropic hydrodynamic and anisotropic magnetohydrodynamic (MHD) simulations. We find that the initial GRF spectral index $α$ has a dramatic impact on the pure hydrodynamic development of thermal instability, influencing the size, number and motions of clouds. Cloud fragmentation happens due to two mechanisms: tearing and contraction rebound. In the runs with isotropic conduction and viscosity, the structures and dynamics of the clouds are dominated by evaporation and condensation flows in the non-linear regime, and the flow speed is regulated by viscosity. Cloud disruptions happen as a result of the Darrieus--Landau instability (DLI). Although at very late times, all individual clouds merge into one cold structure in all hydrodynamic runs. In the MHD case, the cloud structure is determined by both the initial perturbations and the initial magnetic field strength. In high $β$ runs, anisotropic conduction causes dense filaments to align with the local magnetic fields and the field direction can become reoriented. Strong magnetic fields suppress cross-field contraction and cold filaments can form along or perpendicular to the initial fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源