论文标题

物理学引导的欺骗痕量脱离,用于通用面部抗疾病

Physics-Guided Spoof Trace Disentanglement for Generic Face Anti-Spoofing

论文作者

Liu, Yaojie, Liu, Xiaoming

论文摘要

先前的研究表明,面对抗散热器的关键在于微妙的图像模式,称为“欺骗痕迹”,例如颜色扭曲,3D蒙版边缘,Moire模式等。设计一个通用的脸部反弹药模型来估计这些欺骗痕迹不仅可以改善欺骗检测的概括,而且还可以改善模型决策的解释性。然而,由于欺骗类型的多样性以及欺骗痕迹缺乏地面真理,这是一项艰巨的任务。在这项工作中,我们设计了一个新颖的对抗性学习框架,以将欺骗的面孔置于欺骗痕迹和现场直播中。在物理特性的指导下,欺骗的产生表示为添加过程和介入过程的组合。添加剂过程将欺骗性描述为欺骗材料,引入了额外的模式(例如,摩尔图案),可以通过删除这些模式来恢复实时对应物。介入过程将欺骗性描述为完全涵盖某些地区的欺骗材料,在这些区域中,这些地区的现场对应物必须“猜测”。我们使用3个添加剂组件和1个镶嵌组件来表示不同频段的痕迹。在适当的几何校正后,可以利用分解的欺骗痕迹来合成现实的新欺骗面,并可以使用合成的欺骗来训练和改善欺骗检测的概括。我们的方法在3种测试方案上表明了出色的欺骗检测性能:已知攻击,未知攻击和开放式攻击。同时,它提供了对欺骗痕迹的视觉估计。源代码和预培训模型将在出版后公开使用。

Prior studies show that the key to face anti-spoofing lies in the subtle image pattern, termed "spoof trace", e.g., color distortion, 3D mask edge, Moire pattern, and many others. Designing a generic face anti-spoofing model to estimate those spoof traces can improve not only the generalization of the spoof detection, but also the interpretability of the model's decision. Yet, this is a challenging task due to the diversity of spoof types and the lack of ground truth in spoof traces. In this work, we design a novel adversarial learning framework to disentangle spoof faces into the spoof traces and the live counterparts. Guided by physical properties, the spoof generation is represented as a combination of additive process and inpainting process. Additive process describes spoofing as spoof material introducing extra patterns (e.g., moire pattern), where the live counterpart can be recovered by removing those patterns. Inpainting process describes spoofing as spoof material fully covering certain regions, where the live counterpart of those regions has to be "guessed". We use 3 additive components and 1 inpainting component to represent traces at different frequency bands. The disentangled spoof traces can be utilized to synthesize realistic new spoof faces after proper geometric correction, and the synthesized spoof can be used for training and improve the generalization of spoof detection. Our approach demonstrates superior spoof detection performance on 3 testing scenarios: known attacks, unknown attacks, and open-set attacks. Meanwhile, it provides a visually-convincing estimation of the spoof traces. Source code and pre-trained models will be publicly available upon publication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源