论文标题

决策清单和DNF公式的收缩

Shrinkage of Decision Lists and DNF Formulas

论文作者

Rossman, Benjamin

论文摘要

我们基于$ p $ -random限制$ \ mathbf r_p $ in [0,1] $的所有值,在$ p $ -random限制$ \ mathbf r_p $下建立了几乎紧密的界限。对于带有域$ \ {0,1 \}^n $的函数$ f $,令$ \ mathrm {dl}(f)$表示计算$ f $的决策列表的最小大小。我们证明\ [ \ Mathbb e [\ \ Mathrm {dl}(f {\ upharpoonRight} \ Mathbf r_p)\] \ le \ mathrm {dl}(f)^{\ log_ {2/(1-p)}(\ frac {1+p} {1-p} {1-p})}。例如,当$ p = \ sqrt {5} -2 \大约0.24 $时,此键为$ \ sqrt {\ mathrm {dl}(f)} $。对于布尔函数$ f $,我们获得了相同的收缩,相对于DNF公式尺寸加$ 1 $(即,用$ \ mathrm {dnf}(\ cdot)(\ cdot)(\ cdot)+1 $替换$ \ mathrm {dl}(\ cdot)$。

We establish nearly tight bounds on the expected shrinkage of decision lists and DNF formulas under the $p$-random restriction $\mathbf R_p$ for all values of $p \in [0,1]$. For a function $f$ with domain $\{0,1\}^n$, let $\mathrm{DL}(f)$ denote the minimum size of a decision list that computes $f$. We show that \[ \mathbb E[\ \mathrm{DL}(f{\upharpoonright}\mathbf R_p)\ ] \le \mathrm{DL}(f)^{\log_{2/(1-p)}(\frac{1+p}{1-p})}. \] For example, this bound is $\sqrt{\mathrm{DL}(f)}$ when $p = \sqrt{5}-2 \approx 0.24$. For Boolean functions $f$, we obtain the same shrinkage bound with respect to DNF formula size plus $1$ (i.e., replacing $\mathrm{DL}(\cdot)$ with $\mathrm{DNF}(\cdot)+1$ on both sides of the inequality).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源