论文标题
锚定间接治疗比较中的效果修改:对“匹配调整的间接比较:对事件时间数据的应用”的评论”
Effect modification in anchored indirect treatment comparisons: Comments on "Matching-adjusted indirect comparisons: Application to time-to-event data"
论文作者
论文摘要
该评论介绍了Aouni,Gaudel-Dedieu和Sebastien进行的一项模拟研究,评估了不同版本的匹配调整后的间接比较(MAIC)的性能(MAIC),并在锚定的场景中使用共同的比较器进行了评估。模拟研究使用生存结果,而COX比例危害回归作为结果模型。它得出的结论是,使用套索进行可变选择比平衡最大的协变量。但是,在研究中没有治疗效应修饰剂。套索更有效,因为它选择了最大协变量集的子集,但是在诱导偏见的作用修饰符中没有跨研究的不平衡。我们强调了以下几点:(1)在锚定设置中,有必要进行跨审判的不平衡。 (2)如果没有效应修饰符的不平衡,则标准间接比较比MAIC提供了更高的精度和准确性; (3)虽然模拟研究的目标估计是有条件的治疗效果,但MAIC靶向边际或人口平均治疗效果; (4)在MAIC中,可变选择是较低的维度和少量诱导方法(例如Lasso)的问题。最后,数据驱动的方法在选择效应修饰符时不会消除主题知识的必要性。附录中提供了R代码以复制分析并说明我们的观点。
This commentary regards a recent simulation study conducted by Aouni, Gaudel-Dedieu and Sebastien, evaluating the performance of different versions of matching-adjusted indirect comparison (MAIC) in an anchored scenario with a common comparator. The simulation study uses survival outcomes and the Cox proportional hazards regression as the outcome model. It concludes that using the LASSO for variable selection is preferable to balancing a maximal set of covariates. However, there are no treatment effect modifiers in imbalance in the study. The LASSO is more efficient because it selects a subset of the maximal set of covariates but there are no cross-study imbalances in effect modifiers inducing bias. We highlight the following points: (1) in the anchored setting, MAIC is necessary where there are cross-trial imbalances in effect modifiers; (2) the standard indirect comparison provides greater precision and accuracy than MAIC if there are no effect modifiers in imbalance; (3) while the target estimand of the simulation study is a conditional treatment effect, MAIC targets a marginal or population-average treatment effect; (4) in MAIC, variable selection is a problem of low dimensionality and sparsity-inducing methods like the LASSO may be problematic. Finally, data-driven approaches do not obviate the necessity for subject matter knowledge when selecting effect modifiers. R code is provided in the Appendix to replicate the analyses and illustrate our points.