论文标题
改进的Leray-Lions问题混合高级离散问题的误差估计值
Improved error estimates for Hybrid High-Order discretizations of Leray-Lions problems
论文作者
论文摘要
我们得出了对W^(1,p)中设定的Leray-Lions问题的混合高阶(HHO)离散的新颖误差估计,p在(1,2]中。具体来说,我们证明,我们证明,根据问题的退化,取决于(k+1)(k+1)(p-1)(k+1)和(k+1)的融合率可能会有所不同。由完整的数值实验面板说明。
We derive novel error estimates for Hybrid High-Order (HHO) discretizations of Leray-Lions problems set in W^(1,p) with p in (1,2]. Specifically, we prove that, depending on the degeneracy of the problem, the convergence rate may vary between (k+1)(p-1) and (k+1), with k denoting the degree of the HHO approximation. These regime-dependent error estimates are illustrated by a complete panel of numerical experiments.