论文标题
基于社会探索性关注的建议分布平台的建议
Social Explorative Attention based Recommendation for Content Distribution Platforms
论文作者
论文摘要
在现代的社交媒体平台中,有效的内容建议应受益于两个创作者,从而为他们和消费者带来真正的好处,以帮助他们获得真正有趣的内容。为了解决现有方法的社会建议方法的局限性,我们提出了社会探索性注意网络(SEAN),这是一个社会推荐框架,使用个性化内容建议模型来鼓励个人兴趣驱动推荐。 Sean有两个版本:(1)Sean-End2End允许用户的注意向量参与文档中的个性化感兴趣点。 (2)Sean-Keyword从用户的历史阅读材料中提取关键字,以捕获其长期利益。它比第一个版本要快得多,更适合实际使用,而Sean-End2end更有效。这两个版本都允许个性化因素在社交网络上关注用户的高阶朋友,以提高推荐结果的准确性和多样性。从流行的分散内容分发平台Steemit用两种语言构建两种语言的数据集,我们将Sean模型与最新的协作过滤(CF)和基于内容的推荐方法进行比较。实验结果证明了Sean在GINI系数方面的有效性,以提高建议相等性和F1分数,以提高建议精度。
In modern social media platforms, an effective content recommendation should benefit both creators to bring genuine benefits to them and consumers to help them get really interesting content. To address the limitations of existing methods for social recommendation, we propose Social Explorative Attention Network (SEAN), a social recommendation framework that uses a personalized content recommendation model to encourage personal interests driven recommendation. SEAN has two versions: (1) SEAN-END2END allows user's attention vector to attend their personalized interested points in the documents. (2) SEAN-KEYWORD extracts keywords from users' historical readings to capture their long-term interests. It is much faster than the first version, more suitable for practical usage, while SEAN-END2END is more effective. Both versions allow the personalization factors to attend to users' higher-order friends on the social network to improve the accuracy and diversity of recommendation results. Constructing two datasets in two languages, English and Spanish, from a popular decentralized content distribution platform, Steemit, we compare SEAN models with state-of-the-art collaborative filtering (CF) and content based recommendation approaches. Experimental results demonstrate the effectiveness of SEAN in terms of both Gini coefficients for recommendation equality and F1 scores for recommendation accuracy.