论文标题
原始扰动的量子电路复杂性
Quantum Circuit Complexity of Primordial Perturbations
论文作者
论文摘要
我们研究了早期宇宙不同模型中宇宙学扰动的量子回路复杂性。宇宙学扰动复杂性的自然措施基于互合式群体,使我们能够在双曲平面中识别与测量学的复杂性。我们研究了模式功能和物理扰动的复杂性,认为后者通常会对所涉及的物理学提供更有见地的描述。在所有模型中,达到的总复杂性都很大。通货膨胀的扰动可以用相对简单的量子回路表示,而物质主导的收缩阶段的扰动却是复杂性最快的增长。 ekpyrotic扰动位于中间,并以地平线出口前的复杂性最小生长而区分。我们的分析旨在突出不同的宇宙学模型如何通过不同的途径获得相同的最终结果,以及所有模型如何表现出对初始条件的明显敏感性。
We study the quantum circuit complexity of cosmological perturbations in different models of the early universe. A natural measure for the complexity of cosmological perturbations is based on the symplectic group, allowing us to identify complexity with geodesics in the hyperbolic plane. We investigate the complexity of both the mode functions and the physical perturbations, arguing that the latter often provides a more insightful description of the physics involved. In all models the total complexity reached is rather large. Inflationary perturbations may be represented by a comparatively simple quantum circuit, while the perturbations during a matter-dominated contracting phase present the most rapid growth in complexity. Ekpyrotic perturbations reside in the middle and are distinguished by the smallest growth of complexity before horizon exit. Our analysis serves to highlight how different cosmological models achieve the same end result for the perturbations via different routes and how all models show a pronounced sensitivity to initial conditions.