论文标题

有吸引力的抑制性MCMC算法的收敛速率

Convergence Rates of Attractive-Repulsive MCMC Algorithms

论文作者

Jiang, Yu Hang, Liu, Tong, Lou, Zhiya, Rosenthal, Jeffrey S., Shangguan, Shanshan, Wang, Fei, Wu, Zixuan

论文摘要

我们考虑了某些粒子系统的MCMC算法,包括吸引力和排斥力,使它们的收敛分析具有挑战性。我们证明,在有界状态空间上的这些算法的一个版本均匀地具有偏古性,并且具有明确的定量收敛速率。我们还证明,无界状态空间上的一个版本仍然是几何偏度的,然后使用移位耦合的方法来获得其收敛速率的显式定量界限。

We consider MCMC algorithms for certain particle systems which include both attractive and repulsive forces, making their convergence analysis challenging. We prove that a version of these algorithms on a bounded state space is uniformly ergodic with an explicit quantitative convergence rate. We also prove that a version on an unbounded state-space is still geometrically ergodic, and then use the method of shift-coupling to obtain an explicit quantitative bound on its convergence rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源