论文标题

河流:python中流数据的机器学习

River: machine learning for streaming data in Python

论文作者

Montiel, Jacob, Halford, Max, Mastelini, Saulo Martiello, Bolmier, Geoffrey, Sourty, Raphael, Vaysse, Robin, Zouitine, Adil, Gomes, Heitor Murilo, Read, Jesse, Abdessalem, Talel, Bifet, Albert

论文摘要

River是一个机器学习库,用于动态数据流和持续学习。它为不同的流学习问题提供了多种最先进的学习方法,数据生成器/变压器,性能指标和评估者。这是Python中流媒体学习的两个最受欢迎的套件合并的结果:Creme和Scikit-Multiflow。 River根据从开创性包装中学到的经验教训引入了经过改进的建筑。 River的野心是成为在流数据上进行机器学习的首选库。此外,此开源软件包带来了一个大型从业者和研究人员社区。源代码可在https://github.com/online-ml/river上找到。

River is a machine learning library for dynamic data streams and continual learning. It provides multiple state-of-the-art learning methods, data generators/transformers, performance metrics and evaluators for different stream learning problems. It is the result from the merger of the two most popular packages for stream learning in Python: Creme and scikit-multiflow. River introduces a revamped architecture based on the lessons learnt from the seminal packages. River's ambition is to be the go-to library for doing machine learning on streaming data. Additionally, this open source package brings under the same umbrella a large community of practitioners and researchers. The source code is available at https://github.com/online-ml/river.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源