论文标题

分裂:推断出解开品牌客户互动的未观察到的事件概率

Split: Inferring Unobserved Event Probabilities for Disentangling Brand-Customer Interactions

论文作者

Chauhan, Ayush, Anand, Aditya, Garg, Shaddy, Dhamnani, Sunny, Saini, Shiv Kumar

论文摘要

通常,数据仅包含由多个事件组成的复合事件,其中一些事件观察到,有些未观察到。例如,搜索广告点击是由一个品牌观察到的,而在哪些客户中显示了搜索广告 - 一个可操作的变量 - 通常不会观察到。在这种情况下,在未观察到的事件上不可能进行推理。当营销行动被赚取和付费数字渠道时,就会发生这种情况。在许多参与者相互作用的数据集中出现了类似的设置。一种方法是将复合事件用作未观察到的事件的代理。但是,这导致了无效的推论。本文采用了一种直接方法,从而根据复合事件的信息确定了感兴趣的事件,并汇总了复合事件的数据(例如,所示搜索广告的总数)。这项工作通过证明未观察到的事件的概率在轻度条件下的标量因素来促进文献。我们提出了一种方法,通过使用通常可以从赚取和付费渠道中获得的汇总数据来识别标量因子。通过将损失项添加到通常的跨透明拷贝损失中来识别因子。我们验证三个合成数据集的方法。此外,该方法在真实的营销问题上得到了验证,其中一些观察到的事件隐藏在算法中以进行验证。提出的对跨透明损失函数的修改将平均性能提高了46%。

Often, data contains only composite events composed of multiple events, some observed and some unobserved. For example, search ad click is observed by a brand, whereas which customers were shown a search ad - an actionable variable - is often not observed. In such cases, inference is not possible on unobserved event. This occurs when a marketing action is taken over earned and paid digital channels. Similar setting arises in numerous datasets where multiple actors interact. One approach is to use the composite event as a proxy for the unobserved event of interest. However, this leads to invalid inference. This paper takes a direct approach whereby an event of interest is identified based on information on the composite event and aggregate data on composite events (e.g. total number of search ads shown). This work contributes to the literature by proving identification of the unobserved events' probabilities up to a scalar factor under mild condition. We propose an approach to identify the scalar factor by using aggregate data that is usually available from earned and paid channels. The factor is identified by adding a loss term to the usual cross-entropy loss. We validate the approach on three synthetic datasets. In addition, the approach is validated on a real marketing problem where some observed events are hidden from the algorithm for validation. The proposed modification to the cross-entropy loss function improves the average performance by 46%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源