论文标题
随机微分方程的变异量子模拟
Variational quantum simulations of stochastic differential equations
论文作者
论文摘要
随机微分方程(SDE)将不确定现象作为随机变量的时间演变进行模型,在自然和社会科学(例如金融)的各个领域都被利用。由于SDE很少接收分析解决方案,通常必须在实际应用中使用庞大的经典计算资源来求解,因此使用量子计算来加速计算有很大的动机。在这里,我们提出了一种基于变化量子模拟(VQS)解决SDE的量子杂种算法。我们首先通过离散化的三项树结构来近似目标SDE,然后将其作为嵌入SDE变量概率分布的量子状态的时间进化。我们将概率分布直接嵌入量子状态的幅度中,而先前的研究则是振幅中概率分布的平方根。我们的嵌入使我们能够构造简单的量子电路,以模拟一般SDE的状态状态的时间进化。我们还开发了一个方案来计算SDE变量的期望值,并讨论我们的方案是否可以为SDE变量的期望值评估实现量子加速。最后,我们通过模拟几种类型的随机过程来数字验证我们的算法。我们的建议为在量子计算机上模拟SDE提供了一个新的方向。
Stochastic differential equations (SDEs), which models uncertain phenomena as the time evolution of random variables, are exploited in various fields of natural and social sciences such as finance. Since SDEs rarely admit analytical solutions and must usually be solved numerically with huge classical-computational resources in practical applications, there is strong motivation to use quantum computation to accelerate the calculation. Here, we propose a quantum-classical hybrid algorithm that solves SDEs based on variational quantum simulation (VQS). We first approximate the target SDE by a trinomial tree structure with discretization and then formulate it as the time-evolution of a quantum state embedding the probability distributions of the SDE variables. We embed the probability distribution directly in the amplitudes of the quantum state while the previous studies did the square-root of the probability distribution in the amplitudes. Our embedding enables us to construct simple quantum circuits that simulate the time-evolution of the state for general SDEs. We also develop a scheme to compute the expectation values of the SDE variables and discuss whether our scheme can achieve quantum speed-up for the expectation-value evaluations of the SDE variables. Finally, we numerically validate our algorithm by simulating several types of stochastic processes. Our proposal provides a new direction for simulating SDEs on quantum computers.