论文标题
分散随机优化的原始二重框架
A Primal-Dual Framework for Decentralized Stochastic Optimization
论文作者
论文摘要
我们考虑了分散的凸优化问题,其中多种代理必须合作最大程度地减少累积目标函数,每个局部函数都可以表示为数据依赖性损失的经验平均值。进行分散优化的最新方法取决于梯度跟踪,在这种跟踪中,通过双重随机混合矩阵实现共识。这种混合矩阵的构建并不简单,甚至在优化算法开始之前就需要协调。本文提出了一个原始的二重式框架,用于分散的随机优化,以消除对这种双重随机矩阵的需求。取而代之的是,保持双重变量以跟踪邻居之间的分歧。所提出的框架是灵活的,用于开发Saga,L-SVRG,SVRG ++和SEGA算法的分散变体。使用统一的证据,我们确定这些分散的变体的甲骨文复杂性为$ O(1/ε)$,与集中式变体获得的复杂性边界匹配。此外,我们还提出了一个分散的原始双重加速SVRG算法,可实现$ o(1/\sqrtε)$ oracle复杂性,再次与集中式加速SVRG匹配。与方差减少梯度跟踪算法相比,该算法上的数值测试建立了其出色的性能。
We consider the decentralized convex optimization problem, where multiple agents must cooperatively minimize a cumulative objective function, with each local function expressible as an empirical average of data-dependent losses. State-of-the-art approaches for decentralized optimization rely on gradient tracking, where consensus is enforced via a doubly stochastic mixing matrix. Construction of such mixing matrices is not straightforward and requires coordination even prior to the start of the optimization algorithm. This paper puts forth a primal-dual framework for decentralized stochastic optimization that obviates the need for such doubly stochastic matrices. Instead, dual variables are maintained to track the disagreement between neighbors. The proposed framework is flexible and is used to develop decentralized variants of SAGA, L-SVRG, SVRG++, and SEGA algorithms. Using a unified proof, we establish that the oracle complexity of these decentralized variants is $O(1/ε)$, matching the complexity bounds obtained for the centralized variants. Additionally, we also present a decentralized primal-dual accelerated SVRG algorithm achieving $O(1/\sqrtε)$ oracle complexity, again matching the bound for the centralized accelerated SVRG. Numerical tests on the algorithms establish their superior performance as compared to the variance-reduced gradient tracking algorithms.