论文标题
会议/加入晶格上的离散信号处理
Discrete Signal Processing on Meet/Join Lattices
论文作者
论文摘要
晶格是一个部分订购的集合,该集合支持了(或联接)操作,该操作返回两个元素的下限(最小上限)。就像图形一样,晶格是一种基本结构,它发生在跨领域,包括社会数据分析,自然语言处理,计算化学和生物学以及数据库理论。在本文中,我们引入了离散晶格信号处理(DLSP),该晶格索引的数据或信号框架。我们使用Meet(或联接)来定义移位操作,并得出相关的过滤,傅立叶基础和转换以及频率响应的概念。我们表明,晶格信号的频谱遗传了信号域的晶格结构并得出采样定理。最后,我们展示了两种典型的应用:社会科学中形式概念晶格的光谱分析,对组合拍卖中多层晶格的采样和维也纳过滤。形式的概念晶格是对象和属性之间关系的压缩表示。由于关系等效于两分图和超图,因此DLSP为这些结构提供了一种傅立叶分析形式。
A lattice is a partially ordered set supporting a meet (or join) operation that returns the largest lower bound (smallest upper bound) of two elements. Just like graphs, lattices are a fundamental structure that occurs across domains including social data analysis, natural language processing, computational chemistry and biology, and database theory. In this paper we introduce discrete-lattice signal processing (DLSP), an SP framework for data, or signals, indexed by such lattices. We use the meet (or join) to define a shift operation and derive associated notions of filtering, Fourier basis and transform, and frequency response. We show that the spectrum of a lattice signal inherits the lattice structure of the signal domain and derive a sampling theorem. Finally, we show two prototypical applications: spectral analysis of formal concept lattices in social science and sampling and Wiener filtering of multiset lattices in combinatorial auctions. Formal concept lattices are a compressed representation of relations between objects and attributes. Since relations are equivalent to bipartite graphs and hypergraphs, DLSP offers a form of Fourier analysis for these structures.