论文标题

Theta系列和算术应用规范的统一界限

Uniform bounds for norms of theta series and arithmetic applications

论文作者

Waibel, Fabian

论文摘要

我们证明了theta系列的cuspidal部分的彼得森规范的统一界限。这为通过二次形式提供了改进的渐近公式,用于表示表示的数量。 As an application, we show that every integer $n \neq 0,4,7 \,(\operatorname{mod}8)$ is represented as $n= x_1^2 + x_2^2 + x_3^3$ for integers $x_1,x_2,x_3$ such that the product $x_1x_2x_3$ has at most 72 prime divisors.

We prove uniform bounds for the Petersson norm of the cuspidal part of the theta series. This gives an improved asymptotic formula for the number of representations by a quadratic form. As an application, we show that every integer $n \neq 0,4,7 \,(\operatorname{mod}8)$ is represented as $n= x_1^2 + x_2^2 + x_3^3$ for integers $x_1,x_2,x_3$ such that the product $x_1x_2x_3$ has at most 72 prime divisors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源