论文标题

锯齿形边界的非线性稳定性

Nonlinear Stability at the Zigzag Boundary

论文作者

Haberle, Mason, Chowdhary, Abhijit, Wu, Qiliang

论文摘要

我们研究了平面Swift-Hohenberg方程的曲折边界的滚动溶液的动力学。线性分析表明,由于$ t^{ - 1/4} $速率的小扰动代数衰减,而不是经典的$ t^{ - 1/2} $扩散的衰减率,这是由于Bloch-Fourier Space中线性操作员的翻译模式的延续的持续延续的延续性术语的脱落。该证明是基于中性模式的分解和Bloch较大空间中更快的衰减模式的分解,以及一个定点参数,证明了非线性项的无关紧要。

We investigate the dynamics of roll solutions at the zigzag boundary of the planar Swift-Hohenberg equation. Linear analysis shows an algebraic decay of small perturbation with a $t^{- 1/4}$ rate, instead of the classical $t^{- 1/2}$ diffusive decay rate, due to the degeneracy of the quadratic term of the continuation of the translational mode of the linearized operator in the Bloch-Fourier spaces. The proof is based on a decomposition of the neutral mode and the faster decaying modes in the Bloch-Fourier space, and a fixed-point argument, demonstrating the irrelevancy of the nonlinear terms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源