论文标题
资源受限的最佳实验设计
Resource-Constrained Optimal Experimental Design
论文作者
论文摘要
本文的目的是使涉及大量计算费用的问题在计算上进行最佳的实验设计(OED)。我们专注于不确定性的平均客观成本(MOCU),这是OED的特定方法,我们建议向MOCU扩展,以利用替代和自适应抽样。我们专注于减少与评估大量不确定变量的大量控制策略相关的计算费用。我们建议通过近似与替代物相关的每个参数/对照对相关的中间计算来降低MOCU的计算费用。该替代物是由稀疏抽样构建的,并且(可能)通过直接从MOCU规定的实验测量结果中获得的灵敏度估计和概率知识的结合来适应。我们在示例问题上演示了我们的方法,并比较相对于替代物种的MOCU,没有自适应采样和完整的MOCU。我们发现自适应抽样确实提高了性能的证据,但是关于是否使用替代物种的MOCU与完整MOCU的决定将取决于计算与实验的相对费用。如果计算比实验更昂贵,那么应该考虑使用我们的方法。
The goal of this paper is to make Optimal Experimental Design (OED) computationally feasible for problems involving significant computational expense. We focus exclusively on the Mean Objective Cost of Uncertainty (MOCU), which is a specific methodology for OED, and we propose extensions to MOCU that leverage surrogates and adaptive sampling. We focus on reducing the computational expense associated with evaluating a large set of control policies across a large set of uncertain variables. We propose reducing the computational expense of MOCU by approximating intermediate calculations associated with each parameter/control pair with a surrogate. This surrogate is constructed from sparse sampling and (possibly) refined adaptively through a combination of sensitivity estimation and probabilistic knowledge gained directly from the experimental measurements prescribed from MOCU. We demonstrate our methods on example problems and compare performance relative to surrogate-approximated MOCU with no adaptive sampling and to full MOCU. We find evidence that adaptive sampling does improve performance, but the decision on whether to use surrogate-approximated MOCU versus full MOCU will depend on the relative expense of computation versus experimentation. If computation is more expensive than experimentation, then one should consider using our approach.