论文标题

W-NET:具有多维关注和级联多尺度卷积的双重监督医学图像分割模型

w-Net: Dual Supervised Medical Image Segmentation Model with Multi-Dimensional Attention and Cascade Multi-Scale Convolution

论文作者

Wang, Bo, Wang, Lei, Chen, Junyang, Xu, Zhenghua, Lukasiewicz, Thomas, Fu, Zhigang

论文摘要

基于深度学习的医学图像细分技术旨在自动识别和注释医学图像的对象。多尺度方法的非本地关注和特征学习被广泛用于建模网络,从而推动医学图像分割的进展。但是,这些注意机制方法具有弱非本地接受场在医学图像中的小物体的加强连接。然后,重要的小物体在抽象或粗糙特征图中的特征可能会被遗弃,从而导致性能不令人满意。此外,现有的多尺度方法仅专注于不同尺寸的视图,其稀疏的多尺度特征收集的功能不足以使小对象分割。在这项工作中,提出了具有级联多尺度卷积的多维注意分割模型,以预测医学图像中小物体的准确分割。作为重量功能,多维注意模块为重要/信息性的小对象特征提供了系数修改。此外,每个跳过连接路径中的级联多尺度卷积模块都被利用以捕获不同语义深度的多尺度特征。在三个数据集上评估了所提出的方法:Kits19,Decathlon-10的胰腺CT和Miccai 2018 LITS挑战,表明比最先进的基线表现出更好的细分性能。

Deep learning-based medical image segmentation technology aims at automatic recognizing and annotating objects on the medical image. Non-local attention and feature learning by multi-scale methods are widely used to model network, which drives progress in medical image segmentation. However, those attention mechanism methods have weakly non-local receptive fields' strengthened connection for small objects in medical images. Then, the features of important small objects in abstract or coarse feature maps may be deserted, which leads to unsatisfactory performance. Moreover, the existing multi-scale methods only simply focus on different sizes of view, whose sparse multi-scale features collected are not abundant enough for small objects segmentation. In this work, a multi-dimensional attention segmentation model with cascade multi-scale convolution is proposed to predict accurate segmentation for small objects in medical images. As the weight function, multi-dimensional attention modules provide coefficient modification for significant/informative small objects features. Furthermore, The cascade multi-scale convolution modules in each skip-connection path are exploited to capture multi-scale features in different semantic depth. The proposed method is evaluated on three datasets: KiTS19, Pancreas CT of Decathlon-10, and MICCAI 2018 LiTS Challenge, demonstrating better segmentation performances than the state-of-the-art baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源