论文标题
一维Salerno模型晶格中的热化
Thermalization in the one-dimensional Salerno model lattice
论文作者
论文摘要
Salerno模型构成了可集成的Ablowitz-Ladik(Al)模型与更标准的(非集成)离散的非线性schr {Ö} dinger(DNLS)一个之间的有趣插值。局部现场非线性和非线性色散的竞争决定了该模型的热化。在这里,我们研究了萨勒诺(Salerno)一维晶格模型在不可整合的情况下的统计力学,并说明了吉布斯制度中的热化。随着两个限制之间的参数插值(从DNL到Al)变化,导致热化的初始能量和标准密度的区域会扩大。非GIBBS制度的热化在很大程度上取决于有限的系统大小。我们通过直接数值计算来探索此功能的不同参数制度。
The Salerno model constitutes an intriguing interpolation between the integrable Ablowitz-Ladik (AL) model and the more standard (non-integrable) discrete nonlinear Schr{ö}dinger (DNLS) one. The competition of local on-site nonlinearity and nonlinear dispersion governs the thermalization of this model. Here, we investigate the statistical mechanics of the Salerno one-dimensional lattice model in the nonintegrable case and illustrate the thermalization in the Gibbs regime. As the parameter interpolating between the two limits (from DNLS towards AL) is varied, the region in the space of initial energy and norm-densities leading to thermalization expands. The thermalization in the non-Gibbs regime heavily depends on the finite system size; we explore this feature via direct numerical computations for different parametric regimes.