论文标题

SGD_Tucker:一种新型的随机优化策略,用于平行稀疏塔克分解

SGD_Tucker: A Novel Stochastic Optimization Strategy for Parallel Sparse Tucker Decomposition

论文作者

Li, Hao, Li, Zixuan, Li, Kenli, Rellermeyer, Jan S., Chen, Lydia Y., Li, Keqin

论文摘要

稀疏的塔克分解(STD)算法学习核心张量和一组因子矩阵,以获得\ usew-下列{ (Hohdst)。但是,现有的STD算法面临中间变量爆炸的问题,这是由于这些变量的形成,即矩阵Khatri-rao产品,Kronecker产品和矩阵矩阵乘积,遵循稀疏张力张力的整个元素。上述问题可阻止有效计算和大数据平台的深层融合。为了克服瓶颈,提出了一种新型的随机优化策略(SGD $ \ _ $ Tucker),为STD提出了可以自动将高维中间变量分为中间矩阵的小批次。具体来说,SGD $ \ _ $ Tucker仅遵循随机选择的小样本而不是整个元素,同时保持整体准确性和收敛速度。实际上,SGD $ \ _ $ tucker具有与最新状态相比的两个不同进步。首先,SGD $ \ _ $ tucker可以在分布式设置中修剪核心张量的通信开销。其次,SGD $ \ _ $ tucker的低数据依赖性使得精细的并行化,这使得SGD $ \ _ $ Tucker以相同的精度获得了较低的计算开销。实验结果表明,SGD $ \ _ $ Tucker的运行速度至少比最新状态更快。

Sparse Tucker Decomposition (STD) algorithms learn a core tensor and a group of factor matrices to obtain an optimal low-rank representation feature for the \underline{H}igh-\underline{O}rder, \underline{H}igh-\underline{D}imension, and \underline{S}parse \underline{T}ensor (HOHDST). However, existing STD algorithms face the problem of intermediate variables explosion which results from the fact that the formation of those variables, i.e., matrices Khatri-Rao product, Kronecker product, and matrix-matrix multiplication, follows the whole elements in sparse tensor. The above problems prevent deep fusion of efficient computation and big data platforms. To overcome the bottleneck, a novel stochastic optimization strategy (SGD$\_$Tucker) is proposed for STD which can automatically divide the high-dimension intermediate variables into small batches of intermediate matrices. Specifically, SGD$\_$Tucker only follows the randomly selected small samples rather than the whole elements, while maintaining the overall accuracy and convergence rate. In practice, SGD$\_$Tucker features the two distinct advancements over the state of the art. First, SGD$\_$Tucker can prune the communication overhead for the core tensor in distributed settings. Second, the low data-dependence of SGD$\_$Tucker enables fine-grained parallelization, which makes SGD$\_$Tucker obtaining lower computational overheads with the same accuracy. Experimental results show that SGD$\_$Tucker runs at least 2$X$ faster than the state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源