论文标题
具有连续对称性的1D系统中的无限范围相关性
Infinite-range correlations in 1D systems with continuous symmetry
论文作者
论文摘要
O(n) - 对称晶格标量场被考虑,耦合到化学势和源术语。在n = 2的示例中,显示该系统甚至可以在(0+1)尺寸中产生无限范围的相关性,并且只要化学势假设某些离散值,则该系统甚至可以产生无限范围的相关性和非零的真空期望值。讨论了如何产生后一种现象的不同机制,具体取决于源项设置为零还是非零值。总之,这些发现与Mermin-Wagner定理的关系得到了解决。
O(N)-symmetric lattice scalar fields are considered, coupled to a chemical potential and source terms. At the example of N=2, it is shown that such systems can even in (0+1) dimensions produce infinite-range correlations and a non-zero vacuum expectation value whenever the chemical potential assumes certain discrete values. Different mechanisms for how the latter phenomena are produced are discussed, depending on whether source terms are set to zero or non-zero values. In the conclusion, the relation of these findings to the Mermin-Wagner theorem is addressed.