论文标题
使用量扩张的浓度UNET(DDAUNET)在CT图像中的食管肿瘤分割(DDAUNET)
Esophageal Tumor Segmentation in CT Images using Dilated Dense Attention Unet (DDAUnet)
论文作者
论文摘要
CT图像中食道肿瘤的手动或自动描述非常具有挑战性。这是由于肿瘤和相邻组织之间的对比度低,食管的解剖变异以及偶尔存在异物(例如进食管)。因此,医师通常会利用其他知识,例如内窥镜检查结果,临床病史,诸如PET扫描之类的其他成像方式。实现他的其他信息是耗时的,而结果容易出错,可能会导致非确定性结果。在本文中,我们旨在调查仅基于CT的简化临床工作流程以及在何种程度上,允许人们以足够的质量自动分割食管肿瘤。为此,我们提出了一种基于卷积神经网络(CNN)的全自动端到端食管肿瘤分割方法。所提出的网络称为扩张的浓度UNET(DDAUNET),在每个密集块中利用空间和注意力门的通道注意门,以选择性地集中于确定性特征图和区域。扩张的卷积层用于管理GPU记忆并增加网络接受场。我们从288例不同的患者中收集了792次扫描的数据集,包括\ mbox {空气口袋},进食管和近端肿瘤的解剖学。进行了可重复性和可重复性研究,以进行三种不同的训练和验证集。拟议的网络获得了$ \ mathrm {dsc} $ $ 0.79 \ pm 0.20 $的值,平均表面距离为$ 5.4 \ pm 20.2mm $和$ 95 \%$ $ $ hausdorff的距离$ 14.7 \ pm 25.0mm $ 25.0mm $ 25.0mm $ 287的测试扫描,表明基于简化的临床临床工作流程的有前途的临时结果。我们的代码可通过\ url {https://github.com/yousefis/denseunet_esophagus_sementation}公开获得。
Manual or automatic delineation of the esophageal tumor in CT images is known to be very challenging. This is due to the low contrast between the tumor and adjacent tissues, the anatomical variation of the esophagus, as well as the occasional presence of foreign bodies (e.g. feeding tubes). Physicians therefore usually exploit additional knowledge such as endoscopic findings, clinical history, additional imaging modalities like PET scans. Achieving his additional information is time-consuming, while the results are error-prone and might lead to non-deterministic results. In this paper we aim to investigate if and to what extent a simplified clinical workflow based on CT alone, allows one to automatically segment the esophageal tumor with sufficient quality. For this purpose, we present a fully automatic end-to-end esophageal tumor segmentation method based on convolutional neural networks (CNNs). The proposed network, called Dilated Dense Attention Unet (DDAUnet), leverages spatial and channel attention gates in each dense block to selectively concentrate on determinant feature maps and regions. Dilated convolutional layers are used to manage GPU memory and increase the network receptive field. We collected a dataset of 792 scans from 288 distinct patients including varying anatomies with \mbox{air pockets}, feeding tubes and proximal tumors. Repeatability and reproducibility studies were conducted for three distinct splits of training and validation sets. The proposed network achieved a $\mathrm{DSC}$ value of $0.79 \pm 0.20$, a mean surface distance of $5.4 \pm 20.2mm$ and $95\%$ Hausdorff distance of $14.7 \pm 25.0mm$ for 287 test scans, demonstrating promising results with a simplified clinical workflow based on CT alone. Our code is publicly available via \url{https://github.com/yousefis/DenseUnet_Esophagus_Segmentation}.