论文标题

MVHM:用于准确3D手姿势估计的大型多视图手网格基准

MVHM: A Large-Scale Multi-View Hand Mesh Benchmark for Accurate 3D Hand Pose Estimation

论文作者

Chen, Liangjian, Lin, Shih-Yao, Xie, Yusheng, Lin, Yen-Yu, Xie, Xiaohui

论文摘要

从单个RGB图像中估算3D手姿势是具有挑战性的,因为深度歧义会导致问题不足。带有3D手网格注释和多视图图像的训练手姿势估计器通常会带来显着的性能增长。但是,现有的多视图数据集相对较小,带有现成的跟踪器注释或通过模型预测自动化的手接缝,这两者都可能不准确,并且可能引入偏见。收集具有准确网格和关节注释的大型多视图3D手姿势图像很有价值,但剧烈。在本文中,我们设计了一种旋转匹配算法,该算法使刚性网格模型与任何目标网格地面真相匹配。根据匹配算法,我们提出了一条有效的管道,以生成具有准确的3D手网和关节标签的大型多视图手网(MVHM)数据集。我们进一步提出了一种多视图手姿势估计方法,以验证使用我们生成的数据集训练手姿势估计器会大大提高性能。实验结果表明,我们的方法在$ \ text {auc} _ {\ text {\ text {20-50}} $中实现了0.990的性能,而该数据集中的先前的0.939与先前的先前时间相比,MHP数据集的性能。我们的DataSset公开可用。 \ footNote {\ url {https://github.com/kuzphi/mvhm}}}我们的dataSset可在〜\ href {https://github.com/kuzphi/mvhm} {https://github.com/kuzphi/mvhm} {\ color {\ color {blue} {blue} {https e} {https e} {

Estimating 3D hand poses from a single RGB image is challenging because depth ambiguity leads the problem ill-posed. Training hand pose estimators with 3D hand mesh annotations and multi-view images often results in significant performance gains. However, existing multi-view datasets are relatively small with hand joints annotated by off-the-shelf trackers or automated through model predictions, both of which may be inaccurate and can introduce biases. Collecting a large-scale multi-view 3D hand pose images with accurate mesh and joint annotations is valuable but strenuous. In this paper, we design a spin match algorithm that enables a rigid mesh model matching with any target mesh ground truth. Based on the match algorithm, we propose an efficient pipeline to generate a large-scale multi-view hand mesh (MVHM) dataset with accurate 3D hand mesh and joint labels. We further present a multi-view hand pose estimation approach to verify that training a hand pose estimator with our generated dataset greatly enhances the performance. Experimental results show that our approach achieves the performance of 0.990 in $\text{AUC}_{\text{20-50}}$ on the MHP dataset compared to the previous state-of-the-art of 0.939 on this dataset. Our datasset is public available. \footnote{\url{https://github.com/Kuzphi/MVHM}} Our datasset is available at~\href{https://github.com/Kuzphi/MVHM}{\color{blue}{https://github.com/Kuzphi/MVHM}}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源