论文标题

$ su(1,1)$协变量$ S $份地图

$SU(1,1)$ covariant $s$-parametrized maps

论文作者

Klimov, Andrei B., Seyfarth, Ulrich, de Guise, Hubert, Sanchez-Soto, L. L.

论文摘要

我们建议使用$ su(1,1)$对称的系统的$ {s} $ - 使用$ {q} $和$ {p} $符号之间的连接来计算具有$ su(1,1)$对称系统的$ {s} $的实用配方。分析了在两层倍曲面的上纸上定义的自偶(Wigner)相位空间函数的特殊情况(或等效地,在庞加莱盘内)。

We propose a practical recipe to compute the ${s}$-parametrized maps for systems with $SU(1,1)$ symmetry using a connection between the ${Q}$ and ${P} $ symbols through the action of an operator invariant under the group. The particular case of the self-dual (Wigner) phase-space functions, defined on the upper sheet of the two-sheet hyperboloid (or, equivalently, inside the Poincaré disc) are analyzed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源