论文标题
快速图像翻译的空间自适应Pixelwise网络
Spatially-Adaptive Pixelwise Networks for Fast Image Translation
论文作者
论文摘要
我们介绍了一种新的生成器体系结构,旨在快速有效的高分辨率图像到图像翻译。我们将发电机设计为全分辨率图像的极轻的功能。实际上,我们使用像素网络;也就是说,每个像素是通过简单的仿射变换和非线性的组成而独立于他人处理的。我们采取三个重要步骤来配备具有足够表现力的这种看似简单的功能。首先,像素网络的参数在空间上有所不同,因此它们可以比简单的1x1卷积代表更广泛的功能类。其次,这些参数是通过快速卷积网络预测的,该网络处理输入的积极低分辨率表示。第三,我们使用空间坐标的正弦编码来增强输入图像,这为产生现实的新型高频图像含量提供了有效的电感偏置。结果,我们的模型比最先进的基线要快18倍。我们达到了这一加速,同时在不同的图像分辨率和翻译域中生成可比的视觉质量。
We introduce a new generator architecture, aimed at fast and efficient high-resolution image-to-image translation. We design the generator to be an extremely lightweight function of the full-resolution image. In fact, we use pixel-wise networks; that is, each pixel is processed independently of others, through a composition of simple affine transformations and nonlinearities. We take three important steps to equip such a seemingly simple function with adequate expressivity. First, the parameters of the pixel-wise networks are spatially varying so they can represent a broader function class than simple 1x1 convolutions. Second, these parameters are predicted by a fast convolutional network that processes an aggressively low-resolution representation of the input; Third, we augment the input image with a sinusoidal encoding of spatial coordinates, which provides an effective inductive bias for generating realistic novel high-frequency image content. As a result, our model is up to 18x faster than state-of-the-art baselines. We achieve this speedup while generating comparable visual quality across different image resolutions and translation domains.