论文标题
粘合非交换扭曲器空间
Gluing Noncommutative Twistor Spaces
论文作者
论文摘要
我们描述了一个基于Gerstenhaber-Schack复合物的一般程序,用于扩展到量化扭曲的空间,该空间通过奇异空间的变形理论twistor空间的Donaldson-Friedman胶合。我们特别考虑了对扭曲空间的各种可能的量化,这些扭曲空间会留下基本的时空经典,包括最初由第二作者构建的曲折空间的几何量化,以及一些基于非交通性几何形状的变体。我们讨论了这些不同量化程序的胶合结构的特定方面。
We describe a general procedure, based on Gerstenhaber-Schack complexes, for extending to quantized twistor spaces the Donaldson-Friedman gluing of twistor spaces via deformation theory of singular spaces. We consider in particular various possible quantizations of twistor spaces that leave the underlying spacetime manifold classical, including the geometric quantization of twistor spaces originally constructed by the second author, as well as some variants based on noncommutative geometry. We discuss specific aspects of the gluing construction for these different quantization procedures.