论文标题

歧视性CNN脑病变分割模型的样本间骰子分布的统计推断

Statistical inference of the inter-sample Dice distribution for discriminative CNN brain lesion segmentation models

论文作者

Raina, Kevin

论文摘要

假定在许多脑部病变分段任务中,假定为体素的有条件多元素分布的判别性卷积神经网络(CNN)表现良好。为了使经过训练的判别性CNN用于临床实践,将患者的放射学特征输入到模型中,在这种情况下,会产生分割的条件分布。捕获预测的不确定性对于决定放弃模型还是在竞争模型中进行选择可能是有用的。但是,在实践中,我们永远不知道地面真理细分,因此永远无法知道真正的模型差异。在这项工作中,对判别性CNN的分割采样用于通过分析仅基于其磁共振(MR)图像的新患者上的样本间骰子分布来评估受过训练的模型的鲁棒性。此外,通过证明样本间骰子观察是独立的,并且在某些条件下以有限的均值和方差分配相同,提出了严格的基于置信度的决策规则,以决定是拒绝还是接受特定患者的CNN模型。该模型应用于2015年(SISS)数据集,将7个预测识别为非持命名的预测,以及对剩余大脑的平均骰子系数提高了12%。

Discriminative convolutional neural networks (CNNs), for which a voxel-wise conditional Multinoulli distribution is assumed, have performed well in many brain lesion segmentation tasks. For a trained discriminative CNN to be used in clinical practice, the patient's radiological features are inputted into the model, in which case a conditional distribution of segmentations is produced. Capturing the uncertainty of the predictions can be useful in deciding whether to abandon a model, or choose amongst competing models. In practice, however, we never know the ground truth segmentation, and therefore can never know the true model variance. In this work, segmentation sampling on discriminative CNNs is used to assess a trained model's robustness by analyzing the inter-sample Dice distribution on a new patient solely based on their magnetic resonance (MR) images. Furthermore, by demonstrating the inter-sample Dice observations are independent and identically distributed with a finite mean and variance under certain conditions, a rigorous confidence based decision rule is proposed to decide whether to reject or accept a CNN model for a particular patient. Applied to the ISLES 2015 (SISS) dataset, the model identified 7 predictions as non-robust, and the average Dice coefficient calculated on the remaining brains improved by 12 percent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源