论文标题

谱系树中选择强度的普遍限制

Universal constraints on selection strength in lineage trees

论文作者

Genthon, Arthur, Lacoste, David

论文摘要

我们获得了一般的不平等,限制了表型性状的任意功能的平均值,该特征的平均功能包括在存在或不存在自然选择的情况下,包括特征本身的适应性景观。这些不平等意味着选择的强度,这可以从沿着谱系的性状值和分裂的统计数据来衡量。上限与随机热力学中线性响应关系的最新概括有关,并且与Fisher的自然选择基本定理共同具有共同的特征,尽管它们定义了不同的选择度量,但它们的概括性。下限是由于最近对詹森(Jensen)不平等的改善而进行的,这两个范围都取决于健身景观的可变性。我们使用生长细胞菌落的数值模拟以及细菌细胞菌落的延时显微镜实验的实验数据来说明我们的结果。

We obtain general inequalities constraining the difference between the average of an arbitrary function of a phenotypic trait, which includes the fitness landscape of the trait itself, in the presence or in the absence of natural selection. These inequalities imply bounds on the strength of selection, which can be measured from the statistics of trait values and divisions along lineages. The upper bound is related to recent generalizations of linear response relations in Stochastic Thermodynamics, and shares common features with Fisher's fundamental theorem of natural selection, and with its generalization by Price, although they define different measures of selection. The lower bound follows from recent improvements on Jensen's inequality, and both bounds depend on the variability of the fitness landscape. We illustrate our results using numerical simulations of growing cell colonies and with experimental data of time-lapse microscopy experiments of bacteria cell colonies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源