论文标题

Genocchi数字的新概括及其对Bernoulli多项式的后果

A new generalization of the Genocchi numbers and its consequence on the Bernoulli polynomials

论文作者

Farhi, Bakir

论文摘要

本文提出了Genocchi数字和Genocchi定理的新概括。结果,我们获得了一些与Bernoulli多项式密切相关的整数值多项式的重要家族。用$ {(b_n)} _ {n \ in \ mathbb {n}} $ bernoulli数字的顺序以及$ {(b_n(x))} _ {n \ in \ mathbb {n}}多项式$ \ big(b_n(x)-b_n \ big)$的多项式是整数值。

This paper presents a new generalization of the Genocchi numbers and the Genocchi theorem. As consequences, we obtain some important families of integer-valued polynomials those are closely related to the Bernoulli polynomials. Denoting by ${(B_n)}_{n \in \mathbb{N}}$ the sequence of the Bernoulli numbers and by ${(B_n(X))}_{n \in \mathbb{N}}$ the sequence of the Bernoulli polynomials, we especially obtain that for any natural number $n$, the reciprocal polynomial of the polynomial $\big(B_n(X) - B_n\big)$ is integer-valued.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源