论文标题

预算限制了对多个目标的交互式搜索

Budget Constrained Interactive Search for Multiple Targets

论文作者

Zhu, Xuliang, Huang, Xin, Choi, Byron, Jiang, Jiaxin, Zou, Zhaonian, Xu, Jianliang

论文摘要

交互式图形搜索利用人类智能在层次结构中对目标标签进行分类,这些标签可用于图像分类,产品分类和数据库搜索。但是,许多对交互式图形搜索的现有研究旨在最佳地识别单个目标,并受到提出太多问题而无法处理多个目标的局限性。为了解决这两个局限性,在本文中,我们研究了预算限制的交互式图形搜索的新问题,以搜索多个目标,称为KBM-igs-Problem。具体而言,给定层次结构中的一组多个目标t,而两个参数k和b,目标是确定一组K尺寸的选择S,以使选择S和目标之间的接近度T尽可能小。我们理论上分析了更新规则并设计惩罚功能,以捕获选择和目标之间的亲密关系。为了解决KBM-IGS问题,我们开发了一个新颖的框架,使用最佳预期增益的最佳顶点提出问题,从而在目标概率和收益增益之间取消了平衡的权衡。基于KBM-IGS框架,我们首先提出了一种有效的算法STBI来处理单键型问题,这是KBM-igs的特殊情况。然后,我们提出了一种基于动态编程的方法KBM-DP来解决多重目标问题。为了进一步提高效率,我们提出了两种启发式但有效的算法KBM-TOPK和KBM-DP+。 KBM-TOPK开发了变体增益函数,并独立选择了顶部K的顶点。 KBM-DP+使用收益的上限和李子取消资格的顶点来保存计算。具有基本真相目标的大型现实世界数据集的实验验证了我们提出的算法的有效性和效率。

Interactive graph search leverages human intelligence to categorize target labels in a hierarchy, which are useful for image classification, product categorization, and database search. However, many existing studies of interactive graph search aim at identifying a single target optimally, and suffer from the limitations of asking too many questions and not being able to handle multiple targets. To address these two limitations, in this paper, we study a new problem of budget constrained interactive graph search for multiple targets called kBM-IGS-problem. Specifically, given a set of multiple targets T in a hierarchy, and two parameters k and b, the goal is to identify a k-sized set of selections S such that the closeness between selections S and targets T is as small as possible, by asking at most a budget of b questions. We theoretically analyze the updating rules and design a penalty function to capture the closeness between selections and targets. To tackle the kBM-IGS-problem, we develop a novel framework to ask questions using the best vertex with the largest expected gain, which makes a balanced trade-off between target probability and benefit gain. Based on the kBM-IGS framework, we first propose an efficient algorithm STBIS to handle the SingleTarget problem, which is a special case of kBM-IGS. Then, we propose a dynamic programming based method kBM-DP to tackle the MultipleTargets problem. To further improve efficiency, we propose two heuristic but efficient algorithms kBM-Topk and kBM-DP+. kBM-Topk develops a variant gain function and selects the top-k vertices independently. kBM-DP+ uses an upper bound of gains and prunes disqualified vertices to save computations. Experiments on large real-world datasets with ground-truth targets verify both the effectiveness and efficiency of our proposed algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源