论文标题
颞型金字塔网络,用于人行道轨迹预测的多个多人。
Temporal Pyramid Network for Pedestrian Trajectory Prediction with Multi-Supervision
论文作者
论文摘要
预测人群中的人类运动行为对于许多应用非常重要,从自动驾驶汽车的自然导航到视频监视的智能安全系统。所有先前的作品模型并用单个分辨率预测轨迹,这相当低效率且难以同时利用远距离信息(例如,轨迹的目的地)和运动行为的短程信息(例如,在某个时间的步行方向和速度)。在本文中,我们提出了一个时间金字塔网络,用于通过挤压调制和扩张调制来进行行人轨迹预测。我们的分层框架构建了一个特征金字塔,其从上到下越来越丰富的时间信息,可以更好地捕获各种节奏的运动行为。此外,我们提出了一种用多间谍的粗到精细融合策略。通过将全局上下文的顶部粗糙特征逐步合并到丰富的本地上下文的底部精美特征,我们的方法可以完全利用轨迹的远距离和短距离信息。几个基准的实验结果证明了我们方法的优越性。
Predicting human motion behavior in a crowd is important for many applications, ranging from the natural navigation of autonomous vehicles to intelligent security systems of video surveillance. All the previous works model and predict the trajectory with a single resolution, which is rather inefficient and difficult to simultaneously exploit the long-range information (e.g., the destination of the trajectory), and the short-range information (e.g., the walking direction and speed at a certain time) of the motion behavior. In this paper, we propose a temporal pyramid network for pedestrian trajectory prediction through a squeeze modulation and a dilation modulation. Our hierarchical framework builds a feature pyramid with increasingly richer temporal information from top to bottom, which can better capture the motion behavior at various tempos. Furthermore, we propose a coarse-to-fine fusion strategy with multi-supervision. By progressively merging the top coarse features of global context to the bottom fine features of rich local context, our method can fully exploit both the long-range and short-range information of the trajectory. Experimental results on several benchmarks demonstrate the superiority of our method.