论文标题

使用频域启动图像涂料

Image inpainting using frequency domain priors

论文作者

Roy, Hiya, Chaudhury, Subhajit, Yamasaki, Toshihiko, Hashimoto, Tatsuaki

论文摘要

在本文中,我们使用频域信息提出了一种新型图像授课技术。在图像上介绍的先前工作通过仅使用空间域信息训练神经网络来预测缺失的像素。但是,这些方法仍然难以重建实际复杂场景的高频细节,从而导致颜色差异,边界文物,扭曲的图案和模糊纹理。为了减轻这些问题,我们研究是否可以通过使用频域信息(离散的傅立叶变换)以及空间域信息训练网络来获得更好的性能。为此,我们提出了一个基于频率的反卷积模块,该模块使网络能够学习全局上下文,同时选择性地重建高频组件。我们在Celeba,Paris Streetview和DTD纹理数据集上评估了我们提出的方法,并表明我们的方法在定性和定量上都优于当前最新图像介绍技术。

In this paper, we present a novel image inpainting technique using frequency domain information. Prior works on image inpainting predict the missing pixels by training neural networks using only the spatial domain information. However, these methods still struggle to reconstruct high-frequency details for real complex scenes, leading to a discrepancy in color, boundary artifacts, distorted patterns, and blurry textures. To alleviate these problems, we investigate if it is possible to obtain better performance by training the networks using frequency domain information (Discrete Fourier Transform) along with the spatial domain information. To this end, we propose a frequency-based deconvolution module that enables the network to learn the global context while selectively reconstructing the high-frequency components. We evaluate our proposed method on the publicly available datasets CelebA, Paris Streetview, and DTD texture dataset, and show that our method outperforms current state-of-the-art image inpainting techniques both qualitatively and quantitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源