论文标题

基于贝叶斯分数的投资组合选择

Bayesian Quantile-Based Portfolio Selection

论文作者

Bodnar, Taras, Lindholm, Mathias, Niklasson, Vilhelm, Thorsén, Erik

论文摘要

我们从贝叶斯的角度研究了最佳的投资组合分配问题,它使用处于风险的风险(VAR)和有条件价值作为风险度量的价值。通过应用未来投资组合返回的后验预测分布,我们得出了VAR和CVAR计算中所需的相关分位数,并仅根据观察到的数据来表达最佳投资组合权重。这与常规方法相反,该方法最佳解决方案基于估计的未观察到的数量,从而导致次优。我们还获得了全局最小VAR和CVAR投资组合的权重的表达式,并指定了其存在条件。结果表明,如果用于VAR或CVAR计算的置信度太低,则可能不存在这些投资组合。此外,提出了平均值和平均值有效边界的分析表达式,并提供了理论结果向一般相干风险度量的扩展。建议的贝叶斯方法的主要优点之一是理论结果是在有限样本的情况下得出的,因此它们是准确的,可以应用于大维投资组合。 通过使用仿真和实际市场数据,我们通过研究全球最小VAR投资组合的性能和存在以及分析估计的有效边界来比较常规方法的新贝叶斯方法。结论是,贝叶斯方法的表现优于常规方法,特别是在预测样本外变量方面。

We study the optimal portfolio allocation problem from a Bayesian perspective using value at risk (VaR) and conditional value at risk (CVaR) as risk measures. By applying the posterior predictive distribution for the future portfolio return, we derive relevant quantiles needed in the computations of VaR and CVaR, and express the optimal portfolio weights in terms of observed data only. This is in contrast to the conventional method where the optimal solution is based on unobserved quantities which are estimated, leading to suboptimality. We also obtain the expressions for the weights of the global minimum VaR and CVaR portfolios, and specify conditions for their existence. It is shown that these portfolios may not exist if the confidence level used for the VaR or CVaR computation are too low. Moreover, analytical expressions for the mean-VaR and mean-CVaR efficient frontiers are presented and the extension of theoretical results to general coherent risk measures is provided. One of the main advantages of the suggested Bayesian approach is that the theoretical results are derived in the finite-sample case and thus they are exact and can be applied to large-dimensional portfolios. By using simulation and real market data, we compare the new Bayesian approach to the conventional method by studying the performance and existence of the global minimum VaR portfolio and by analysing the estimated efficient frontiers. It is concluded that the Bayesian approach outperforms the conventional one, in particular at predicting the out-of-sample VaR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源