论文标题
基于互相关的判别标准,用于运动图像中的通道选择BCI系统
Cross-Correlation Based Discriminant Criterion for Channel Selection in Motor Imagery BCI Systems
论文作者
论文摘要
客观的。许多基于脑电图(EEG)的脑部计算机界面(BCI)系统使用大量通道来进行更高的性能,这很耗时,可以设置为实用应用,并且对实际应用带来了不便。在不损害性能的情况下找到最佳的渠道子集是一项必要且具有挑战性的任务。方法。在本文中,我们提出了一个基于互相关的判别标准(XCDC),该标准评估了渠道歧视不同运动图像(MI)任务的渠道的重要性。根据提议的标准对通道进行排名和选择。 XCDC的功效在两个运动图像脑电图数据集上进行评估。主要结果。在这两个数据集中,与全渠道设置相比,XCDC大大减少了不损害分类精度的通道量。在相同的准确性约束下,所提出的方法比基于Pearson的相关系数和常见空间模式的现有通道选择方法所需的通道少。 XCDC的可视化与神经生理学原理显示出一致的结果。意义。这项工作提出了一个定量标准,用于评估和对MI任务中EEG通道的重要性,并提供了一种实用方法,可以在MI BCI系统的校准阶段中选择排名的通道,从而减轻了随后的步骤中的计算复杂性和配置难度,从而导致实时和更方便的BCI系统。
Objective. Many electroencephalogram (EEG)-based brain-computer interface (BCI) systems use a large amount of channels for higher performance, which is time-consuming to set up and inconvenient for practical applications. Finding an optimal subset of channels without compromising the performance is a necessary and challenging task. Approach. In this article, we proposed a cross-correlation based discriminant criterion (XCDC) which assesses the importance of a channel for discriminating the mental states of different motor imagery (MI) tasks. Channels are ranked and selected according to the proposed criterion. The efficacy of XCDC is evaluated on two motor imagery EEG datasets. Main results. In both datasets, XCDC significantly reduces the amount of channels without compromising classification accuracy compared to the all-channel setups. Under the same constraint of accuracy, the proposed method requires fewer channels than existing channel selection methods based on Pearson's correlation coefficient and common spatial pattern. Visualization of XCDC shows consistent results with neurophysiological principles. Significance. This work proposes a quantitative criterion for assessing and ranking the importance of EEG channels in MI tasks and provides a practical method for selecting the ranked channels in the calibration phase of MI BCI systems, which alleviates the computational complexity and configuration difficulty in the subsequent steps, leading to real-time and more convenient BCI systems.