论文标题
介电屏障排放中排放电流和动量注射的经验模型
Empirical Model for Discharge Current and Momentum Injection in Dielectric Barrier Discharge
论文作者
论文摘要
具有不对称的直边电极配置的介电屏障排放(DBD)等离子体执行器可生成无运动部件的壁式射流。库仑力与流体运动随着DBD参数的函数的机械描述尚不清楚。本文介绍了DBD执行器的实验研究,包括与微型载体,等离子体积相关的电流,以及在AC频率(0.5-2 kHz)上的壁射流动量以及高达19.5 kV的峰值峰值电压。排出电流是用高时间分辨率测量的,并且在光学上表征了等离子体体积,并且DBD壁射流诱导的动量是根据使用定制的皮托管下游测得的轴向速度计算的。排放电流分析表明正半周期和负半周期之间不对称。两种电流都与经验拟合系数产生了幂律关系。等离子体长度线性变化,音量随电压四倍而变化。尽管血浆长度以较高的频率达到渐近值,但由于电离区域的高度增加,血浆体积的增长。在简单的2D配置中,DBD壁喷射动量显示出接近线性的依赖性,并且在本工作中考虑的电压和频率范围内放电电流。提出的经验模型表征了DBD壁射流动量,并且仅基于AC输入的排放电流。随着等离子体体积的估计,可以应用模型来确定数值模拟中更现实的边界条件。
Dielectric Barrier Discharge (DBD) plasma actuators with an asymmetric, straight edge electrode configuration generate a wall-bounded jet without moving parts. Mechanistic description of the interaction between the Coulombic forces and fluid motion as a function of DBD parameters remains unclear. This paper presents an experimental investigation of DBD actuator, including electrical current associated with microdischarges, plasma volume, and the wall jet momentum over a range of AC frequencies (0.5 - 2 kHz) and peak-to-peak voltages up to 19.5 kV. Discharge current is measured with a high temporal resolution, and plasma volume is characterized optically, and the momentum induced by the DBD wall jet is computed based on the axial velocities measured downstream of the actuator using a custom-built pitot tube. Discharge current analysis demonstrated asymmetry between the positive and negative semi-cycle; both currents yielded a power-law relationship with empirical fitting coefficients. Plasma length varies linearly and volume quadratically with voltage. Although plasma length reached an asymptotic value at a higher frequency, the plasma volume grows due to the increasing height of the ionization region. In a simple 2D configuration, the DBD wall jet momentum shows near-linear dependency with discharge current in the range of voltages and frequencies considered in this work. The presented empirical model characterizes the DBD wall jet momentum and the discharge current based only on the AC inputs. With the estimation of plasma volume, the model can be applied for determining more realistic boundary conditions in numerical simulations.