论文标题

是什么成为明星老师?用于评估教师在在线教育方面的表现的分层BERT模型

What Makes a Star Teacher? A Hierarchical BERT Model for Evaluating Teacher's Performance in Online Education

论文作者

Wang, Wen, Zhuang, Honglei, Zhou, Mi, Liu, Hanyu, Li, Beibei

论文摘要

教育对社会和个人生活都有重大影响。随着技术的发展,在过去十年中,在线教育一直在迅速增长。尽管有一些有关学生行为分析,课程概念挖掘和课程建议的在线教育研究(Feng,Tang和Liu 2019; Pan等人,2017年),但对于评估教师在在线教育中的表现的研究很少。在本文中,我们进行了一项系统的研究,以使用1,085个在线课程的字幕来理解和有效地预测教师的表现。我们的无模型分析表明,教师的口头提示(例如问题策略,情感吸引力和对冲)及其课程结构设计都与教师的绩效评估显着相关。然后,基于这些见解,我们提出了一个分层课程BERT模型,以预测教师在在线教育中的表现。我们提出的模型可以捕获每个课程中的层次结构以及从课程内容中提取的深层语义特征。实验结果表明,我们提出的方法比几种最新方法获得了显着增益。我们的研究在帮助教师改善教学风格并增强其教学材料设计方面为将来提供更有效的在线教学提供了重大的社会影响。

Education has a significant impact on both society and personal life. With the development of technology, online education has been growing rapidly over the past decade. While there are several online education studies on student behavior analysis, the course concept mining, and course recommendations (Feng, Tang, and Liu 2019; Pan et al. 2017), there is little research on evaluating teachers' performance in online education. In this paper, we conduct a systematic study to understand and effectively predict teachers' performance using the subtitles of 1,085 online courses. Our model-free analysis shows that teachers' verbal cues (e.g., question strategy, emotional appealing, and hedging) and their course structure design are both significantly correlated with teachers' performance evaluation. Based on these insights, we then propose a hierarchical course BERT model to predict teachers' performance in online education. Our proposed model can capture the hierarchical structure within each course as well as the deep semantic features extracted from the course content. Experiment results show that our proposed method achieves significant gain over several state-of-the-art methods. Our study provides a significant social impact in helping teachers improve their teaching style and enhance their instructional material design for more effective online teaching in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源