论文标题
在产品集上解码多元多样性代码
Decoding Multivariate Multiplicity Codes on Product Sets
论文作者
论文摘要
多重性Schwartz-Zippel引理界限产品集上多元多项式的零多数性。这种引理激发了科帕蒂,萨拉夫和耶卡宁的多样性代码[J. ACM,2014年,他展示了如何使用这种引理来构建高速率的本地代码。但是,有关这些代码的算法结果至关重要地依赖于以下事实:多项式是在矢量空间中评估的,而不是任意产品集。 在这项工作中,我们展示了如何在有限产物集(大于特征和零特征的领域)上解码多项式时间中大多样性的多元多样性代码。以前,这种解码算法即使是由于误差的正分数也不是众所周知的。相比之下,我们的工作一直延伸到代码的距离,尤其是超过了唯一的解码界和约翰逊的界限。对于超过约翰逊界限的错误,这些代码的结合列表列表甚至尚不清楚。 我们的算法是将经典多项式方法直接用于多元设置的应用。特别是,我们不依赖从多变量到单变量的情况的减少,这是基于多元多项式的解码代码上许多现有结果的典型表现。但是,多项式方法在多元设置中的一种香草应用不会在列表大小上产生多项式上限。我们通过采用多元多元化代码的替代视图来获得列表大小上的多项式绑定。在此视图中,我们使用新鲜的变量$ z $将同一顺序的所有部分衍生物粘合在一起。然后,我们通过将其视为$ z $中有理函数的字段$ \ mathbb {f}(z)$来应用多项式方法。
The multiplicity Schwartz-Zippel lemma bounds the total multiplicity of zeroes of a multivariate polynomial on a product set. This lemma motivates the multiplicity codes of Kopparty, Saraf and Yekhanin [J. ACM, 2014], who showed how to use this lemma to construct high-rate locally-decodable codes. However, the algorithmic results about these codes crucially rely on the fact that the polynomials are evaluated on a vector space and not an arbitrary product set. In this work, we show how to decode multivariate multiplicity codes of large multiplicities in polynomial time over finite product sets (over fields of large characteristic and zero characteristic). Previously such decoding algorithms were not known even for a positive fraction of errors. In contrast, our work goes all the way to the distance of the code and in particular exceeds both the unique decoding bound and the Johnson bound. For errors exceeding the Johnson bound, even combinatorial list-decodablity of these codes was not known. Our algorithm is an application of the classical polynomial method directly to the multivariate setting. In particular, we do not rely on a reduction from the multivariate to the univariate case as is typical of many of the existing results on decoding codes based on multivariate polynomials. However, a vanilla application of the polynomial method in the multivariate setting does not yield a polynomial upper bound on the list size. We obtain a polynomial bound on the list size by taking an alternative view of multivariate multiplicity codes. In this view, we glue all the partial derivatives of the same order together using a fresh set $z$ of variables. We then apply the polynomial method by viewing this as a problem over the field $\mathbb{F}(z)$ of rational functions in $z$.