论文标题
灯射线操作员,探测器和重力事件形状
Light-ray operators, detectors and gravitational event shapes
论文作者
论文摘要
灯光算子自然是由沿轻度时间沿零无穷大的Einstein方程整合而产生的。我们将光线算子与天体球上的物理探测器联系起来,并使用最陡峭的下降技术为其硬模式提供了明确的表达式。然后,我们研究了它们的代数在无质量颗粒的通用4维QFT中,并与复杂的Cordova-shao代数相比。对于重力的情况,邦迪新闻平方术语将无穷大的ANEC操作员扩展到包含剪切的ANEC,作为量子操作员,该量子沿着天空的特定方向赋予了所有辐射的能量。最终,我们提供了剪切 - 包含ANEC与检测器事件形状的作用的直接连接,并研究了在大规模紧凑物体散射中产生的红外安全引力事件形状,计算软膨胀中领先顺序的经典限制中的无穷大的能量通量。
Light-ray operators naturally arise from integrating Einstein equations at null infinity along the light-cone time. We associate light-ray operators to physical detectors on the celestial sphere and we provide explicit expressions in perturbation theory for their hard modes using the steepest descent technique. We then study their algebra in generic 4-dimensional QFTs of massless particles with integer spin, comparing with complexified Cordova-Shao algebra. For the case of gravity, the Bondi news squared term provides an extension of the ANEC operator at infinity to a shear-inclusive ANEC, which as a quantum operator gives the energy of all quanta of radiation in a particular direction on the sky. We finally provide a direct connection of the action of the shear-inclusive ANEC with detector event shapes and we study infrared-safe gravitational wave event shapes produced in the scattering of massive compact objects, computing the energy flux at infinity in the classical limit at leading order in the soft expansion.