论文标题
Alexandrov定理,用于2+1平面辐射空间
Alexandrov Theorem for 2+1 flat radiant spacetimes
论文作者
论文摘要
Alexandrov的经典定理指出,将其边界与3维欧几里得空间的凸多发性相关联的地图是一组射击,从一组凸多发性的凸层与一组局部欧几里得级别的等轴测类别相吻合,该类别与圆锥形的单相中的2 singularitial sillical sillical sillical sillical sillical sillical sillical sillical hillial the $ $2π$2π$。 Fillastre在较高的属表面上对本地欧几里得度量的陈述证明了类似的陈述,其圆锥形奇异性大于$2π$,通过将它们的通用覆盖物嵌入了3维Minkowski空间中,作为Fuchsian Polyhedra的边界。 Alexandrov和Fillastre的原始证据都依赖于域定理的不变性,因此无效。沃尔科夫(Volkov)在他的论文中提供了一种有效的Alexandrov定理证明,然后由Bobenko,Izmestiev和Fillastre推广。当前的工作通过调整沃尔科夫的各种方法来提供有效版本的菲拉斯特定理,并扩展了Fillastre的结果:我们表明,对于任何当地封闭的欧几里得表面$σ$,具有任意角度的圆锥形奇异性$(θ_i) $(κ_i)_ {1 \ leq i \ leq s} $,以至于$κ_i<θ_i$和$κ_i\ $κ_i\ leq2π$,存在局部的Minkoswki 3- manifold $ m $线性$ M $,带有线性自由度,带有圆锥形奇异的$(κ_i)$ s $ s $ s polied and poliedy and polie and s poliedy and polie and。 $ p $ in $ m $的边界是等距到$σ$的;此外,这样的夫妇$(m,p)$是唯一的。
A classical Theorem of Alexandrov states that the map associating its boundary to a convex polyhdedron of the 3-dimensional Euclidean space is a bijection from the set of convex polyhdedron up to congruence to the set of isometry classes of locally Euclidean metric on the 2-sphere with conical singularities smaller that $2π$. Fillastre proved a similar statement for locally Euclidean metric on higher genus surfaces with conical singularities bigger than $2π$ by embedding their universal covering in 3-dimensional Minkowski space as the boundary of Fuchsian polyhedra. The original proofs of Alexandrov and Fillastre both rely on invariance of domain Theorem hence are not effective. Volkov, in his thesis, provided a variational, hence effective, proof of Alexandrov Theorem which has then been generalised by Bobenko, Izmestiev and Fillastre. The present work goes further by adapting Volkov's variational method to provide an effective version of Fillastre Theorem and extend Fillastre's result: we show that for any closed locally Euclidean surface $Σ$ with conical singularities of arbitrary angles $(θ_i)_{1 \leq i \leq s }$ and any choice of Lorentzian angles $(κ_i)_{1\leq i\leq s}$ such that $κ_i<θ_i$ and $κ_i\leq 2π$, there exists a locally Minkoswki 3-manifold $M$ of linear holonomy with conical singularities $(κ_i)_{1\leq i\leq s}$ and a convex polyedron $P$ in $M$ whose boundary is isometric to $Σ$; furthermore such a couple $(M,P)$ is unique.