论文标题
重建定理,用于平滑歧管上的分布细菌
Reconstruction Theorem for Germs of Distributions on Smooth Manifolds
论文作者
论文摘要
重建定理是规则性结构理论的基石[HAI14]。在[CZ20]中,作者在欧几里得空间上的分布理论语言$ \ mathbb {r}^d $中表明并证明了这一结果,而无需任何参考原始框架。在本文中,我们将它们的构造概括为在通用$ d $维平滑的歧管$ m $上的分布情况下,证明了在这种情况下的重建定理。这是为了牢记规律性结构理论的扩展到平滑的流形。
The reconstruction theorem is a cornerstone of the theory of regularity structures [Hai14]. In [CZ20] the authors formulate and prove this result in the language of distributions theory on the Euclidean space $\mathbb{R}^d$, without any reference to the original framework. In this paper we generalize their constructions to the case of distributions over a generic $d$-dimensional smooth manifold $M$, proving the reconstruction theorem in this setting. This is done having in mind the extension of the theory of regularity structures to smooth manifolds.