论文标题

从一个到全部:学习匹配异质和部分重叠的图

From One to All: Learning to Match Heterogeneous and Partially Overlapped Graphs

论文作者

Liu, Weijie, Qian, Hui, Zhang, Chao, Xie, Jiahao, Shen, Zebang, Zheng, Nenggan

论文摘要

近年来,在图形匹配中见证了一系列的研究活动,该活动旨在在两个图形上找到节点的对应关系,并且是许多人工智能应用的核心。但是,在现实世界应用中,与部分重叠的异质图与部分重叠仍然是一个具有挑战性的问题。本文提出了第一种实践学习方法来应对这一挑战。提出的无监督方法采用了一种新颖的部分OT范式来同时学习运输计划和节点嵌入。从一对一的方式,整个学习过程都被分解为一系列易于解决的子处理,每个学习过程仅处理单一类型的节点的比对。还提出了一种搜索运输量的机制。实验结果表明,所提出的方法优于最先进的图形匹配方法。

Recent years have witnessed a flurry of research activity in graph matching, which aims at finding the correspondence of nodes across two graphs and lies at the heart of many artificial intelligence applications. However, matching heterogeneous graphs with partial overlap remains a challenging problem in real-world applications. This paper proposes the first practical learning-to-match method to meet this challenge. The proposed unsupervised method adopts a novel partial OT paradigm to learn a transport plan and node embeddings simultaneously. In a from-one-to-all manner, the entire learning procedure is decomposed into a series of easy-to-solve sub-procedures, each of which only handles the alignment of a single type of nodes. A mechanism for searching the transport mass is also proposed. Experimental results demonstrate that the proposed method outperforms state-of-the-art graph matching methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源