论文标题
高红移模拟本地星系中的空间分辨直接方法金属性:温度结构对金属性梯度的影响
Spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients
论文作者
论文摘要
我们研究了HII区域温度结构假设如何影响“直接方法”在Sami Galaxy调查的星系中使用多物种极光线进行空间分辨的金属性观测值。 SAMI609396B,RedShift $ z = 0.018 $,是一个低质量的银河系,中较小的合并,并具有强烈的恒星形成,类似于高红移的条件。我们使用三种方法来得出直接的金属性并与强线诊断相比。空间金属性趋势在三种直接方法之间显示出显着差异。我们的第一种方法是基于[OIII] $λ$ 4363 Auroral Line和传统$ T_E $([OII])的常用电子温度$ T_E $([OIII]) - $ T_E $([OIII])。第二种方法将最近的经验校正应用于[OIII]/[OII]强比率的O $^+$ $。第三种方法从[sii] $λλ$ 4069,76极光线中渗入$ t_e $([oii])。第一种方法有利于沿SAMI609396B的正金属性梯度,而第二和第三种方法产生了扁平的梯度。强线诊断主要产生平坦的梯度,尽管受到震惊区域的污染不量化。我们得出的结论是,直接方法中HII区域内温度结构的忽视假设可能会导致金属性梯度研究中的巨大差异。我们对SAMI609396B的详细分析强调了高准确的金属性梯度测量需要多种发射线和改进的空间分辨率,以便适当地限制发射气体的激发源,物理条件和温度结构。与未来的设施(如JWST/NIRSPEC和地面ELTs)的整体场光谱研究对于最大程度地减少对遥远星系中测得的梯度的系统影响至关重要。
We investigate how HII region temperature structure assumptions affect "direct-method" spatially-resolved metallicity observations using multispecies auroral lines in a galaxy from the SAMI Galaxy Survey. SAMI609396B, at redshift $z=0.018$, is a low-mass galaxy in a minor merger with intense star formation, analogous to conditions at high redshifts. We use three methods to derive direct metallicities and compare with strong-line diagnostics. The spatial metallicity trends show significant differences among the three direct methods. Our first method is based on the commonly used electron temperature $T_e$([OIII]) from the [OIII]$λ$4363 auroral line and a traditional $T_e$([OII]) -- $T_e$([OIII]) calibration. The second method applies a recent empirical correction to the O$^+$ abundance from the [OIII]/[OII] strong-line ratio. The third method infers the $T_e$([OII]) from the [SII]$λλ$4069,76 auroral lines. The first method favours a positive metallicity gradient along SAMI609396B, whereas the second and third methods yield flattened gradients. Strong-line diagnostics produce mostly flat gradients, albeit with unquantified contamination from shocked regions. We conclude that overlooked assumptions about the internal temperature structure of HII regions in the direct method can lead to large discrepancies in metallicity gradient studies. Our detailed analysis of SAMI609396B underlines that high-accuracy metallicity gradient measurements require a wide array of emission lines and improved spatial resolutions in order to properly constrain excitation sources, physical conditions, and temperature structures of the emitting gas. Integral-field spectroscopic studies with future facilities such as JWST/NIRSpec and ground-based ELTs will be crucial in minimising systematic effects on measured gradients in distant galaxies.