论文标题

W = 0 CM型K3 X K3 Orbifolds上的复杂结构模量稳定:---算术,几何和粒子物理---

W=0 Complex Structure Moduli Stabilization on CM-type K3 x K3 Orbifolds:---Arithmetic, Geometry and Particle Physics---

论文作者

Kanno, Keita, Watari, Taizan

论文摘要

在字符串压实中,这是一个重要的问题,是否不可避免地会以普兰克尺度库的阶数的超电势<w>的真空期望值最终。关于弦理论中的体积稳定和通胀以及超对称标准模型的现象学的任何想法,都将受到该问题的答案的影响。在这项工作中,我们遵循一个想法,是为了制作<w> $ \ simeq $ 0,其中内部歧管具有带有算术表征的真空复杂结构,并解决了F理论的calabi-yau四倍紧凑型。 K3 x K3 Orbifolds的模量空间包含许多这样的真空。解决了A <w> = 0通量的算术条件,然后所有K3模量都具有超对称质量。对于Z_2-Orbifolds,研究了可能的量规组,物质表示和离散对称性。

It is an important question in string compactification whether complex structure moduli stabilization inevitably ends up with a vacuum expectation value of the superpotential < W > of the order of the Planck scale cubed. Any thoughts on volume stabilization and inflation in string theory, as well as on phenomenology of supersymmetric Standard Models, will be affected by the answer to this question. In this work, we follow an idea for making < W > $\simeq$ 0 where the internal manifold has a vacuum complex structure with arithmetic characterization, and address Calabi--Yau fourfold compactification of F-theory. The moduli space of K3 x K3 orbifolds contain infinitely many such vacua. Arithmetic conditions for a < W > =0 flux are worked out, and then all the K3 moduli have supersymmetric mass. Possible gauge groups, matter representations and discrete symmetries are studied for the case of Z_2-orbifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源